【題目】已知各項均為正數(shù)的兩個數(shù)列和{}滿足:an+1=,n∈N*.
(1)設(shè)bn+1=1+,n∈N*,求證:數(shù)列是等差數(shù)列;
(2)設(shè)bn+1=·,n∈N*,且是等比數(shù)列,求a1和b1的值.
【答案】(1)見解析;(2)a1=b1=.
【解析】試題分析:(1)由an+1=,等式右邊分子分母同時除以,再將bn+1=1+帶入可得,從而得證;
(2)由不等式性質(zhì)有: 進(jìn)而得,設(shè)等比數(shù)列{an}的公比為q,由反證法可得q=1,故an=a1(n∈N*),所以1<a1≤,從而得{bn}是公比為的等比數(shù)列,亦可由反證法得a1=.
試題解析:
(1)證明 由題設(shè)知an+1===,所以=,
從而-=1(n∈N*),
所以數(shù)列是以1為公差的等差數(shù)列.
(2)解 因為an>0,bn>0,
所以≤a+b<(an+bn)2,
從而1<an+1=≤.(*)
設(shè)等比數(shù)列{an}的公比為q,由an>0知q>0.下證q=1.
若q>1,則a1=<a2≤,故當(dāng)n>logq時,an+1=a1qn>,與(*)矛盾;
若0<q<1,則a1=>a2>1,故當(dāng)n>logq時,an+1=a1qn<1,與(*)矛盾.
綜上,q=1,故an=a1(n∈N*),
所以1<a1≤.
又bn+1=·=·bn(n∈N*),所以{bn}是公比為的等比數(shù)列.
若a1≠,則>1,于是b1<b2<b3.
又由a1=得bn= (n∈N*),所以b1,b2,b3中至少有兩項相同,矛盾,
所以a1=,從而bn==.
所以a1=b1=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點和點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為非負(fù)數(shù),其前項和為,且對任意的,都有.
(1)若, ,求的最大值;
(2)若對任意,都有,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺機(jī)床同時生產(chǎn)一種零件,在天中,兩臺機(jī)床每天生產(chǎn)的次品數(shù)分別為:
甲:;乙:.
(1)分別求兩組數(shù)據(jù)的眾數(shù)、中位數(shù);
(2)根據(jù)兩組數(shù)據(jù)平均數(shù)和標(biāo)準(zhǔn)差的計算結(jié)果比較兩臺機(jī)床性能.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*,n≥2), .
(1)求的值;
(2)是否存在一個實數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實數(shù)t;若不存在,請說明理由;
(3)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會有名同學(xué),成員構(gòu)成如下表,其中表中部分?jǐn)?shù)據(jù)不清楚,只知道從這名同學(xué)中隨機(jī)抽取一位,抽到該名同學(xué)為“數(shù)學(xué)專業(yè)”的概率為.
性別 專業(yè) | 中文 | 英語 | 數(shù)學(xué) | 體育 |
男 | ||||
女 |
現(xiàn)從這名同學(xué)中隨機(jī)抽取名同學(xué)參加社會公益活動(每位同學(xué)被選到的可能性相同).
(Ⅰ)求的值;
(Ⅱ)求選出的名同學(xué)恰為專業(yè)互不相同的男生的概率
(Ⅲ)設(shè)為選出的名同學(xué)中“女生或數(shù)學(xué)專業(yè)”的學(xué)生的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)已知函數(shù)在處取得極小值,不等式的解集為,若且求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com