分析 (1)由題意可知:當(dāng)f(x)=0,則k(x-1)-2lnx=0,即$\frac{k}{2}$(x-1)=lnx,若k>0,當(dāng)直線$y=\frac{k}{2}({x-1})$與曲線y=lnx有且只有一個(gè)交點(diǎn)(1,0)時(shí),則直線$y=\frac{k}{2}({x-1})$為曲線y=lnx在x=1處的切線,則$\frac{k}{2}=1$,即可求得實(shí)數(shù)k的值;
(2)g(x)=xe1-x,求導(dǎo)知g'(x)=(1-x)e1-x,令g'(x)≥0,求得函數(shù)的單調(diào)遞增區(qū)間,g'(x)<0,求得函數(shù)的單調(diào)遞減區(qū)間,求得其值域,對任意m∈(0,1),方程f(x)=m在區(qū)間$({\frac{1}{e^2},e})$上有兩個(gè)不等實(shí)根,根據(jù)函數(shù)的單調(diào)性求得函數(shù)的最小值,h(x)=-x+2lnx+2-2ln2,求導(dǎo),利用導(dǎo)數(shù)求得其單調(diào)區(qū)間及最大值,則$\left\{\begin{array}{l}f({\frac{1}{e^2}})=k({\frac{1}{e^2}-1})-2ln\frac{1}{e^2}≥1\\ f(e)=k({e-1})-2lne≥1\end{array}\right.⇒\frac{3}{e-1}≤k≤\frac{{3{e^2}}}{{{e^2}-1}}$,即可求得實(shí)數(shù)k的取值范圍.
解答 解:(1)由于f(1)=0,則由題意,f(x)有且只有一個(gè)零點(diǎn)x=1,
令f(x)=0,k(x-1)-2lnx=0,則$\frac{k}{2}$(x-1)=lnx
若k>0,當(dāng)直線$y=\frac{k}{2}({x-1})$與曲線y=lnx有且只有一個(gè)交點(diǎn)(1,0)時(shí),
直線$y=\frac{k}{2}({x-1})$為曲線y=lnx在x=1處的切線,
則$\frac{k}{2}=1$,即k=2,
綜上,實(shí)數(shù)k的值為2.
(2)由g(x)=xe1-x可知g'(x)=(1-x)e1-x,
令g'(x)≥0,解得:x≤1,
g'(x)<0,解得:x>1,
即g(x)在(0,1)上單調(diào)遞增,在(1,e)上單調(diào)遞減,
從而g(x)在(0,e)上的值域?yàn)椋?,1);
則原題意等價(jià)于:對任意m∈(0,1),方程f(x)=m在區(qū)間$({\frac{1}{e^2},e})$上有兩個(gè)不等實(shí)根,
$f'(x)=k-\frac{2}{x}=\frac{kx-2}{x}$,
由于f(x)在$({\frac{1}{e^2},e})$上不單調(diào),則$\frac{1}{e^2}<\frac{2}{k}<e$,且f(x)在$({\frac{1}{e^2},\frac{2}{k}})$上單調(diào)遞減,在$({\frac{2}{k},e})$上單調(diào)遞增,
則函數(shù)f(x)的最小值為$f({\frac{2}{k}})=k({\frac{2}{k}-1})-2ln\frac{2}{k}=-k+2lnk+2-2ln2$,
記h(x)=-x+2lnx+2-2ln2,則h′(x)=-1+$\frac{2}{x}$=$\frac{2-x}{x}$,
由h′(x)>0解得:x<2,
從而函數(shù)h(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減,最大值為h(2)=0,即$f({\frac{2}{k}})≤0$;
另一方面,由$\left\{\begin{array}{l}f({\frac{1}{e^2}})=k({\frac{1}{e^2}-1})-2ln\frac{1}{e^2}≥1\\ f(e)=k({e-1})-2lne≥1\end{array}\right.⇒\frac{3}{e-1}≤k≤\frac{{3{e^2}}}{{{e^2}-1}}$;
綜上,實(shí)數(shù)k的取值范圍為$[{\frac{3}{e-1},\frac{{3{e^2}}}{{{e^2}-1}}}]$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及最值,導(dǎo)數(shù)與不等式的綜合應(yīng)用,考查構(gòu)造法,考查計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com