【題目】已知函數(shù).

1)若在區(qū)間上同時存在函數(shù)的極值點和零點,求實數(shù)的取值范圍.

2)如果對任意,有,求實數(shù)的取值范圍.

【答案】12

【解析】

1)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,畫出其函數(shù)圖象,根據(jù)圖象,得出實數(shù)的取值范圍;

2)結(jié)合函數(shù)的單調(diào)性,構(gòu)造函數(shù),由得出函數(shù)上單調(diào)遞減,則上恒成立,即上恒成立,得出的最小值,即可得出實數(shù)的取值范圍.

1)函數(shù)的定義域為,

;

上單調(diào)遞增,在上單調(diào)遞減,則極大值為

當(dāng)時,;當(dāng)時,

,得在區(qū)間上存在唯一零點,則函數(shù)的圖象,如下圖所示

在區(qū)間,上同時存在函數(shù)的極值點和零點

,解得

2)由(1)可知,函數(shù)上單調(diào)遞減

不妨設(shè),由,得

函數(shù)上單調(diào)遞減

上恒成立,即上恒成立

當(dāng)時,的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S-ABCD的底面是邊長為2的正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.

1)求證:ACSD;

2)若SD⊥平面PAC,求二面角P-AC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為偶函數(shù),且當(dāng)時,..給出下列關(guān)于函數(shù)的說法:①當(dāng)時,;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為菱形,△PAD為正三角形,且E為AD的中點,BE⊥平面PAD.

(Ⅰ)求證:平面PBC⊥平面PEB;

(Ⅱ)求平面PEB與平面PDC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過右焦點的直線與橢圓交于兩點,且當(dāng)點是橢圓的上頂點時,,線段的中點為

(1)求橢圓的方程;

(2)延長線段與橢圓交于點,若,求此時的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對數(shù)換底公式:logaN=;

(2)寫出對數(shù)換底公式的一個性質(zhì)(不用證明),并舉例應(yīng)用這個性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對數(shù)換底公式:logaN=;

(2)寫出對數(shù)換底公式的一個性質(zhì)(不用證明),并舉例應(yīng)用這個性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,為兩個不同的平面,,為兩條不同的直線,下列命題中正確的是( )

①若,,則 ②若,,則;

③若,,,則 ④若,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|x-a|-1,(a為常數(shù)).

1)若fx)在x[0,2]上的最大值為3,求實數(shù)a的值;

2)已知gx=xfx+a-m,若存在實數(shù)a∈(-1,2],使得函數(shù)gx)有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案