16.若${(\sqrt{x}-\frac{a}{x})^n}$展開式中所有二項式系數(shù)之和是64,常數(shù)項為15,則實數(shù)a的值是±1.

分析 由題意可得2n=64,解得n=6.z再利用$(\sqrt{x}-\frac{a}{x})^{6}$的通項公式即可得出.

解答 解:由題意可得2n=64,解得n=6.
∴$(\sqrt{x}-\frac{a}{x})^{6}$的通項公式Tr+1=${∁}_{6}^{r}$$(\sqrt{x})^{6-r}(-\frac{a}{x})^{r}$=(-a)r${∁}_{6}^{r}$${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴常數(shù)項=$(-a)^{2}{∁}_{6}^{2}$=15,解得a=±1.
故答案為:±1.

點評 本題考查二項式定理的性質(zhì)及其通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,則目標函數(shù)z=x+y的最小值為( 。
A.5B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤6;
(2)若不等式6m2-4m<f(x)對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{14}{3}$B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$($\overrightarrow a$+$\overrightarrow b$)=5,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.任取$k∈[-\sqrt{3},\sqrt{3}]$,直線y=k(x+2)與圓x2+y2=4相交于A,B兩點,則$\left|{\left.{AB}\right|}\right.≥2\sqrt{3}$的概率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)點A,B的坐標分別為(-6,0),(6,0),直線AM,BM相交于點M,且它們的斜率之積是$\frac{4}{9}$,則動點M的軌跡加上A,B兩點所表示的曲線是( 。
A.B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓上,則該雙曲線的離心率為( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$y=sin(2x+\frac{π}{3}-2m)(m>0)$為偶函數(shù),則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

同步練習冊答案