4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{14}{3}$B.6C.7D.8

分析 該幾何體的直觀圖如圖所示.連接BD,則該幾何體由直三棱柱BCD-EFG和三棱錐E-ABD組合而成.

解答 解:該幾何體的直觀圖如圖所示.
連接BD,則該幾何體由直三棱柱BCD-EFG和三棱錐E-ABD組合而成,
其體積為$\frac{1}{2}×2×2×3+\frac{1}{3}×\frac{1}{2}×2×2×3=8$.
故選:D.

點(diǎn)評 本題考查了三棱柱與三棱錐的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥4}\\{x-y≤2}\\{3y-x≤4}\end{array}}\right.$,則$\frac{y}{x}$的最小值為( 。
A.1B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:A1,A2是互斥事件:命題q:A1,A2是對立事件,那么( 。
A.p是q的必要但不充分條件
B.p是q的充分但不必要條件
C.p是q的充要條件
D.p既不是q的充分條件,也不q的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋物線的準(zhǔn)線方程是$y=\frac{1}{2}$,則其標(biāo)準(zhǔn)方程是( 。
A.y2=2xB.x2=-2yC.y2=-xD.x2=-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線l1:x-2y+3$\sqrt{5}$=0相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AM⊥x軸于點(diǎn)M,且動(dòng)點(diǎn)N滿足$\overrightarrow{MA}$=$\sqrt{3}$$\overrightarrow{MN}$,設(shè)動(dòng)點(diǎn)N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)直線l與直線l1垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點(diǎn),且平面ADE⊥平面MNC,求$\frac{ME}{MN}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若${(\sqrt{x}-\frac{a}{x})^n}$展開式中所有二項(xiàng)式系數(shù)之和是64,常數(shù)項(xiàng)為15,則實(shí)數(shù)a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.-1B.1C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線方程為$\frac{x^2}{4}-{y^2}$=1,則該雙曲線的漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

同步練習(xí)冊答案