【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線(xiàn)上,直線(xiàn)l過(guò)點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線(xiàn)段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
【答案】(1),l的極坐標(biāo)方程為;(2)
【解析】
(1)先由題意,將代入即可求出;根據(jù)題意求出直線(xiàn)的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可;
(2)先由題意得到P點(diǎn)軌跡的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可,要注意變量的取值范圍.
(1)因?yàn)辄c(diǎn)在曲線(xiàn)上,
所以;
即,所以,
因?yàn)橹本(xiàn)l過(guò)點(diǎn)且與垂直,
所以直線(xiàn)的直角坐標(biāo)方程為,即;
因此,其極坐標(biāo)方程為,即l的極坐標(biāo)方程為;
(2)設(shè),則, ,
由題意,,所以,故,整理得,
因?yàn)?/span>P在線(xiàn)段OM上,M在C上運(yùn)動(dòng),所以,
所以,P點(diǎn)軌跡的極坐標(biāo)方程為,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,,,,.
(Ⅰ)若點(diǎn)為的中點(diǎn),求證:平面;
(Ⅱ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚?xiě)下面的2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
參考公式:,其中
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)在處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.
①求實(shí)數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工科院校對(duì)A、B兩個(gè)專(zhuān)業(yè)的男、女生人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),得到以下表格:
專(zhuān)業(yè)A | 專(zhuān)業(yè)B | 合計(jì) | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計(jì) | 50 | 100 |
如果認(rèn)為工科院校中“性別”與“專(zhuān)業(yè)”有關(guān),那么犯錯(cuò)誤的概率不會(huì)超過(guò)( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花卉經(jīng)銷(xiāo)商銷(xiāo)售某種鮮花,售價(jià)為每支5元,成本為每支2元.銷(xiāo)售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷(xiāo)售.當(dāng)天未售出的當(dāng)垃圾處理.根據(jù)以往的銷(xiāo)售情況,按 進(jìn)行分組,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計(jì)算該種鮮花日需求量的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表;
(2)該經(jīng)銷(xiāo)商某天購(gòu)進(jìn)了400支這種鮮花,假設(shè)當(dāng)天的需求量為x枝,,利潤(rùn)為y元,求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計(jì)利潤(rùn)不小于800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知函數(shù),求函數(shù)在時(shí)的值域;
(2)函數(shù)有兩個(gè)不同的極值點(diǎn),,
①求實(shí)數(shù)的取值范圍;
②證明:.
(本題中可以參與的不等式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的條件下,第二次抽到次品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)和直線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與軸交點(diǎn)記為,與曲線(xiàn)交于,兩點(diǎn),Q在x軸下方,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com