1.△ABC中,AB=3,BC=4,B=60°,則AC=$\sqrt{13}$.

分析 由已知利用余弦定理即可求得AC的值.

解答 解:∵AB=3,BC=4,B=60°,
∴由余弦定理可得:AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•AC•cosB}$=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$.
故答案為:$\sqrt{13}$.

點評 本題考查了余弦定理在解三角形中的簡單應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè)AB=ykm,并在公路北側(cè)建造邊長為xkm的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y關(guān)于x的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:x取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項和,若a1,a2,a4成等比數(shù)列,則$\frac{S_4}{S_2}$的值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)無窮等差數(shù)列{an}的前n項和為Sn,已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn.試求所有n的值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.二項式(9x+$\frac{1}{3\sqrt{x}}$)18的展開式的常數(shù)項為18564(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若數(shù)列{$\frac{1}{n(n+1)}$}的前n項和為Sn,若Sn•Sn+1=$\frac{3}{4}$,則正整數(shù)n的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知數(shù)列{an}的各項均為正數(shù),且滿足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),則a1024=( 。
A.$\frac{\sqrt{2}}{16}$B.$\frac{1}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若同時拋擲兩枚骰子,則向上的點數(shù)之差的絕對值為3的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系內(nèi),區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內(nèi)投一點,落在區(qū)域N內(nèi)的概率是( 。
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

同步練習冊答案