若P是以F1F2為焦點(diǎn)的橢圓
x2
100
+
y2
36
=1上一點(diǎn),則△PF1F2的周長(zhǎng)等于
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得a=10,b=6,c=8;從而由橢圓的定義可得|PF2|+|PF1|=2a=20;|F1F2|=2c=16;從而得周長(zhǎng).
解答: 解:由題意,a=10,b=6,c=8;
故|PF2|+|PF1|=2a=20;
|F1F2|=2c=16,
故△PF1F2的周長(zhǎng)為
|PF2|+|PF1|+|F1F2|=20+16=36;
故答案為:36.
點(diǎn)評(píng):本題考查了橢圓的定義的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R,且a<b,則(  )
A、a3>b3
B、a2<b2
C、
1
a
1
b
D、ac2≤bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2)、B(-1,2),動(dòng)點(diǎn)P滿足AP⊥BP,若雙曲線
x2
a2
-
y2
b2
-=1的一條漸近線與動(dòng)點(diǎn)P的軌跡沒(méi)有公共點(diǎn),則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=a+b
3
,a,b∈Z},x1,x2∈A,下列結(jié)論不正確的是( 。
A、x1+x2∈A
B、x1-x2∈A
C、x1x2∈A
D、當(dāng)x2≠0時(shí),
x1
x2
∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將圓x2+y2=4上點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的一半,所得曲線設(shè)為E.
(1)求曲線E的方程;
(2)若曲線E與x軸、y軸分別交于點(diǎn)A(a,0),B(-a,0),C(0,b),其中a>0,b>0.過(guò)點(diǎn)C的直線l與曲線E交于另一點(diǎn)D,并與x軸交于點(diǎn)P,直線AC與直線BD交于點(diǎn)Q.當(dāng)點(diǎn)P異于點(diǎn)B時(shí),求證:
OP
OQ
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(mx2,
1-cos2x
2
+(2cos2
x
2
-1)2),
b
=(
1
mx-1
,-x)(m是常數(shù)).
(1)若f(x)=
1
a
b
是定義域內(nèi)的奇函數(shù),求m的值;
(2)若f(x)>0,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
,且|
a
|=1,|
b
|=2,(
a
+2
b
)⊥(3
a
-
b
).
(Ⅰ)求向量
a
b
夾角的大;
(Ⅱ)求|
a
-2
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一名心率過(guò)速患者服用某種藥物后心率立刻明顯減慢,之后隨著藥力的減退,心率再次慢慢升高,下面心率關(guān)于時(shí)間的一個(gè)可能圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱點(diǎn)(x0,x0)為函數(shù)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+bx-b有不動(dòng)點(diǎn)(1,1)和(-3,-3),求a、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案