已知a,b,c∈R,且a<b,則( 。
A、a3>b3
B、a2<b2
C、
1
a
1
b
D、ac2≤bc2
考點:不等式的基本性質(zhì)
專題:不等式
分析:對于ABC,可以舉反例說明不成立,對于D,根據(jù)根據(jù)不等式的基本性質(zhì),即可證明成立.
解答: 解:對于A,當(dāng)a=-1,b=1時,顯然不成立,
對于B,當(dāng)a=-2,b=0時,顯然不成立,
對于C,當(dāng)a=-1,b=1時,顯然不成立,
對于D.∵a<b,c2≥0,根據(jù)不等式的基本性質(zhì),兩邊同乘以c2,∴ac2≤bc2,
故選:D
點評:本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的過點(0,1),且離心率等于
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,橢圓C與直線y=kx+1相交于兩個不同的點A,B,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為a,AC1與BD1相交于點O,則有(  )
A、
AB
A1C1
=2a2
B、
AB
AC1
=
2
a2
C、
AB
AO
=
1
2
a2
D、
BC
DA1
=a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x-1)3,x≥1
(1-x)3x<1
.若關(guān)于x的不等式f(x)<f(ax+1)的解集中有且僅有2個整數(shù),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx(sinx+cosx)-
1
2

(1)若0<α<
π
2
,且sinα=
2
2
,求f(α)的值
(2)當(dāng)x∈(-
24
,
24
)時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知,AB=5,AC=3,BC=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓的兩個焦點,P為橢圓上一點,∠F1PF2=60°
(1)求橢圓離心率的范圍;
(2)求證:S△PF1F2=
3
3
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的三視圖如圖所示,△PBC為正三角形.
(Ⅰ)在平面PCD中作一條與底面ABCD平行的直線,并說明理由;
(Ⅱ)求證:AC⊥平面PAB;
(Ⅲ)求三棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是以F1F2為焦點的橢圓
x2
100
+
y2
36
=1上一點,則△PF1F2的周長等于
 

查看答案和解析>>

同步練習(xí)冊答案