已知奇函數(shù)y=f(x)在定義域(-7,7)上單調(diào)遞減,且滿足條件f(1-a)+f(2a-5)<0,求a的取值范圍.
考點(diǎn):奇偶性與單調(diào)性的綜合,函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(1-a)+f(2a-5)<0,結(jié)合已知條件可得-7<-2a+5<1-a<7,解不等式可求a的范圍.
解答: 解:∵f(1-a)+f(2a-5)<0,
∴f(1-a)<-f(2a-5),
∵y=f(x)是奇函數(shù),
∴f(1-a)<f(-2a+5),
∵奇函數(shù)y=f(x)在定義域(-7,7)上單調(diào)遞減,
∴-7<-2a+5<1-a<7,
∴實(shí)數(shù)a的取值范圍為(4,6).
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性及函數(shù)的單調(diào)性在抽象函數(shù)中的應(yīng)用,及不等式的求解,屬于基礎(chǔ)試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2+bx+c,且f(1+x)=f(-x),則下列命題成立的是( 。
A、f(x)在區(qū)間(-∞,1]上是減函數(shù)
B、f(x)在區(qū)間(-∞,
1
2
]
上是減函數(shù)
C、f(x)在區(qū)間(-∞,1]上是增函數(shù)
D、f(x)在區(qū)間(-∞,
1
2
]
上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x
(1)求f(
3
)的值;
(2)已知x∈[0,
π
2
],求函數(shù)f(x)的值域;
(3)若α∈(0,
π
4
),β∈(
π
2
,π)且f(
a
2
)=
11
5
,f(
α+β
2
)=
23
13
,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2x+x-a
=x(a∈R)在[-1,1]上有解,則a的取值范圍是( 。
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-px+3.
(1)若f(0)=f(4),求不等式f(x)≤0的解集;
(2)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求p的取值范圍;
(3)當(dāng)p=2時(shí),若函數(shù)在[0,m]上的最大值為3,最小值為2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)不共線,空間內(nèi)任一點(diǎn)O滿足
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則“x+y+z=1”是“點(diǎn)P在由A,B,C所確定的平面內(nèi)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(x,1),
b
=(1,2-x),
a
b
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列一些關(guān)于數(shù)列{an}的命題:
①若{an}既是等差數(shù)列,又是等比數(shù)列,則{an}一定是常數(shù)數(shù)列;
②若{an}是等比數(shù)列,則數(shù)列{an+an+1}一定也是等比數(shù)列;
③若{an}滿足遞推公式an+1=an•q,則{an}一定是等比數(shù)列;
④若{an}的前n項(xiàng)和Sn=qn-1,則{an}一定是等比數(shù)列.
其中正確的有
 
(填寫(xiě)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
為非零向量,且
a
b
夾角為
π
3
,若向量
p
=
a
|
a
|
+
b
|
b
|
,則|
p
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案