矩陣M=有特征向量為e1=,e2=,
(1)求e1和e2對應(yīng)的特征值;
(2)對向量α=,記作α=e1+3e2,利用這一表達(dá)式間接計(jì)算M4α,M10α.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩陣M=,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P′(-4,0),求實(shí)數(shù)a的值;并求矩陣M的特征值及其對應(yīng)的特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩陣M=,N=,在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到的曲線F,求曲線F的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知復(fù)數(shù),且為純虛數(shù).
(1)求復(fù)數(shù);
(2)若,求復(fù)數(shù)的模.
查看答案和解析>>