分析 (Ⅰ)連結(jié)OM,推導(dǎo)出OM∥PB,由此能證明PB∥平面ACM.
(2)取DO的中點N,連結(jié)MN,AN,則MN∥PO,推導(dǎo)出∠MAN=α為所求的直線AM與平面ABCD所成的角,從而求出sinα=$\frac{MN}{AM}=\frac{2}{3}$,取AO的中點R,連結(jié)NR,MR,則∠MRN為二面角M-AC-B的補角,即為π-β.從而得到cos(π-β)=-cosβ=$\frac{\sqrt{2}}{2}$,由此能求出sinαcosβ.
解答 證明:(Ⅰ)連結(jié)OM,在△PBD中,
∵O為AC的中點,M為PD的中點.∴OM∥PB,
∵OM?平面ACM,PB?平面ACM,
∴PB∥平面ACM;(4分)
解:(2)取DO的中點N,連結(jié)MN,AN,則MN∥PO,
∵PO⊥平面ABCD,∴MN⊥平面ABCD,
∴∠MAN=α為所求的直線AM與平面ABCD所成的角.
∵MN=$\frac{1}{2}$PO=$\frac{1}{2}$,
在Rt△ADO中,∵DO=$\sqrt{{1}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{5}}{2}$,AN=$\frac{1}{2}$DO=$\frac{\sqrt{5}}{4}$,
在Rt△AMN中,AM=$\sqrt{(\frac{\sqrt{5}}{4})^{2}+(\frac{1}{2})^{2}}$=$\frac{3}{4}$,
∴sinα=$\frac{MN}{AM}=\frac{2}{3}$,(8分)
取AO的中點R,連結(jié)NR,MR,
∵NR∥AD,∴NR⊥OA,MN⊥平面ABCD,
由三垂線定理知MR⊥AO,故∠MRN為二面角M-AC-B的補角,即為π-β.
∵NR=$\frac{1}{2}$,MN=$\frac{1}{2}$,∴cos(π-β)=-cosβ=$\frac{\sqrt{2}}{2}$,(11分)
∴sinαcosβ=$\frac{2}{3}×(-\frac{\sqrt{2}}{2})$=-$\frac{\sqrt{2}}{3}$.(12分)
點評 本題考查線面平行的證明,考查線面角的正弦值和二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{18}{35}$ | B. | $\frac{15}{35}$ | C. | $\frac{12}{35}$ | D. | $\frac{9}{35}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>1 | B. | $m>\frac{1}{2}$ | C. | m>2 | D. | m≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20% | B. | 25% | C. | 40% | D. | 80% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ2=1.99 | |
B. | 甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中 | |
C. | 甲類水果的平均質(zhì)量μ1=0.4kg | |
D. | 甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | 0 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x=2kπ+$\frac{4π}{3}$,k∈Z} | B. | {x|x=2kπ+$\frac{π}{3}$,k∈Z} | C. | {$\frac{4π}{3}$,$\frac{π}{3}$} | D. | {x|x=kπ+$\frac{π}{3}$,k∈Z} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com