7.直線xsinα+y+2=0的傾斜角的取值范圍是( 。
A.(0,$\frac{π}{4}$)∪($\frac{3}{4}$π,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π]D.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)

分析 根據(jù)題意,求出直線xsinα+y+2=0的斜率k,分析可得-1≤k≤1,由直線的傾斜角與斜率的關(guān)系,計(jì)算可得答案.

解答 解:根據(jù)題意,直線xsinα+y+2=0變形為y=-sinαx-2,
其斜率k=-sinα,則有-1≤k≤1,
則其傾斜角的范圍為:[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π);
故選:D.

點(diǎn)評(píng) 本題考查直線的傾斜角,關(guān)鍵是掌握直線的斜率與傾斜角的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,-π<φ<0,x∈R)函數(shù)部分如圖所示.
(Ⅰ)求函數(shù)f(x)表達(dá)式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列可以作為直線2x-y+1=0的參數(shù)方程的是( 。
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t為參數(shù))$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t為參數(shù))$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t為參數(shù))$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t為參數(shù))$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在下面的四個(gè)圖象中,其中一個(gè)圖象是函數(shù)f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(a∈R)的導(dǎo)函數(shù)y=f′(x)的圖象,則f(1)等于( 。
A.$\frac{1}{3}$B.$\frac{7}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{3}$或$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知關(guān)于x的不等式2x+$\frac{1}{(x-a)^{2}}$≥7在x∈(a,+∞)上恒成立,則實(shí)數(shù)a的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.閱讀如圖的程序框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{4}$,$\frac{1}{2}$]內(nèi),則輸入的實(shí)數(shù)x的取值范圍是( 。
A.[-2,-1]B.(-∞,-2]∪[-1,+∞)C.[-2,2]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)(x∈R).
( I)用“五點(diǎn)法”畫出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;
( II)令g(x)=f(-x)求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知一個(gè)八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是( 。
A.不平行的兩條棱所在直線所成的角為60°或90°
B.四邊形AECF為正方形
C.點(diǎn)A到平面BCE的距離為$\frac{{\sqrt{6}}}{4}$
D.該八面體的頂點(diǎn)在同一個(gè)球面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ,圓心為C點(diǎn)A($\sqrt{2}$,$\frac{π}{4}$),則線段AC的長為( 。
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案