A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 1 |
分析 根據(jù)已知條件可判定四邊形ABCD是菱形,并且邊長為$\sqrt{2}$,對等式$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$+$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$=$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$,兩邊平方可得cos∠ABC,從而求出sin∠ABC,根據(jù)四邊形ABCD的面積S=BA•BC•sin∠ABC,即可求出答案.
解答 解:四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),∴四邊形ABCD是平行四邊形;
∵$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$、$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$、$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$都是單位向量,$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$+$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$=$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$,
∴四邊形ABCD是菱形,且邊長為$\sqrt{2}$,∴${(\frac{\overrightarrow{BA}}{|\overrightarrow{BA}|}+\frac{\overrightarrow{BC}}{|\overrightarrow{BC}|})}^{2}$=${(\frac{\sqrt{3}•\overrightarrow{BD}}{|\overrightarrow{BD}|})}^{2}$,
整理得:$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|•|\overrightarrow{BC}|}$=$\frac{1}{2}$,cos∠ABC=$\frac{1}{2}$,∴sin∠ABC=$\frac{\sqrt{3}}{2}$,
故四邊形ABCD的面積為S=$\sqrt{2}$•$\sqrt{2}$•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
故選:A.
點(diǎn)評 本題主要考查平面向量的運(yùn)算及其幾何意義,求解本題的關(guān)鍵是判斷出四邊形ABCD是菱形,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1,y=x0 | B. | y=$\sqrt{x-1}$•$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$ | ||
C. | y=x,y=$\root{3}{{x}^{3}}$ | D. | y=|x|,t=($\sqrt{x}$)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com