16.如圖,直線PA為⊙O的切線,切點為A,PO交⊙O于E,F(xiàn)兩點,直徑BC⊥OP,連接AB交PO于點D.
(1)若PA=4,PE=2,求⊙O直徑的長度.
(2)證明:PA=PD.

分析 (1)利用切割線定理,即可求⊙O直徑的長度;
(2)連結AC,由已知條件推導出∠BAP=∠ADP,即可證明PA=PD.

解答 解:(1)∵直線PA為⊙O的切線,切點為A,PO交⊙O于E,F(xiàn)兩點,
∴PA2=PE•PF,
∵PA=4,PE=2,
∴42=2•(2+EF),
∴EF=6,
即⊙O直徑的長度為6;
證明:(2)連結AC.
∵直徑BC⊥OP,連接AB交PO于點D,BC是直徑,
∴∠C+∠B=90°,∠ODB+∠B=90°,
∴∠C=∠ODB,
∵直線PA為圓O的切線,切點為A,
∴∠C=∠BAP,
∵∠ADP=∠ODB,
∴∠BAP=∠ADP,
∴PA=PD.

點評 本題考查線段相等的證明,考查切割線定理,是中檔題,解題時要認真審題,注意弦切角定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.關于x的方程$|\begin{array}{l}{1}&{x}&{{x}^{2}}\\{1}&{2}&{4}\\{1}&{3}&{9}\end{array}|$=0的解為x=2或x=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在直角坐標系xOy,以O為極點,x軸的正半軸建立直角坐標系,直線l的極坐標方程$ρsin(θ+\frac{π}{4})$=2$\sqrt{2}(m+1)$,而曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(其中φ為參數(shù));
(1)若直線l與曲線C恰好有一個公共點,求實數(shù)m的值;
(2)當m=-$\frac{3}{4}$,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.過直線x+2y+5=0上一動點A(A不在y軸上)作焦點為F(2,0)的拋物線y2=2px的兩條切線,M,N為切點,直線AM,AN分別與y軸交于點B,C.
(Ⅰ)求證:BF⊥AM,并求△ABC的外接圓面積的最小值;
(Ⅱ)求證:直線MN恒過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(x∈[2,8],a>0,且a≠1)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知△ABC中,A+B=3C,且△ABC的外接圓面積為2π,則△ABC面積的最大值為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.平面直角坐標系中,點P、Q是方程$\sqrt{{x^2}+2\sqrt{7}x+{y^2}+7}+\sqrt{{x^2}-2\sqrt{7}x+{y^2}+7}$=8表示的曲線C上不同兩點,且以PQ為直徑的圓過坐標原點O,則O到直線PQ的距離為( 。
A.2B.$\frac{6}{5}$C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知△ABC的三個頂點坐標分別為A(-1,0),B(2,3),C(1,2$\sqrt{2}$),且定點P(1,1).
(1)求△ABC的外接圓的標準方程;
(2)若過定點P的直線與△ABC的外接圓交于E,F(xiàn)兩點,求弦EF中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若a∈{4,5,6}且a∈{6,7},則a的值為6.

查看答案和解析>>

同步練習冊答案