分析 利用函數(shù)是奇函數(shù),求解出f(x)的解析式,在求解f(2)的值.
解答 解:函數(shù)f(x)是定義在R上的奇函數(shù),即f(-x)=-f(x).f(0)=0,即f(0)=30+m=0,解得m=-1.
當(dāng)x≤0時(shí),f(x)=3x-2x-1;
當(dāng)x>0時(shí),則-x<0,那么:f(-x)=3-x+2x-1;
∵f(-x)=-f(x).
∴f(x)=-3-x-2x+1;
則f(2)=-$\frac{1}{9}$-4+1=$-\frac{28}{9}$.
故答案為:$-\frac{28}{9}$.
點(diǎn)評(píng) 本題考查了函數(shù)解析式的求解以及帶值計(jì)算問(wèn)題,利用奇函數(shù)這性質(zhì).比較基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈(0,+∞),ln x≠x-1 | B. | ?x∉(0,+∞),ln x=x-1 | ||
C. | ?x0∈(0,+∞),ln x0≠x0-1 | D. | ?x0∉(0,+∞),ln x0=x0-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,3] | B. | [1,2] | C. | (-1,3] | D. | (-∞,-1)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n | B. | n2 | C. | 2n2 | D. | n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com