分析 a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2),可得a2=a1+$\frac{1}{2}$=$\frac{3}{2}$,同理可得:a3,a4,a5.由an=an-1+$\frac{1}{n(n-1)}$,可得an-an-1=$\frac{1}{n-1}-\frac{1}{n}$,利用“裂項(xiàng)求和”方法即可得出.
解答 解:∵a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2),∴a2=a1+$\frac{1}{2}$=$\frac{3}{2}$,同理可得:a3=$\frac{5}{3}$,a4=$\frac{7}{4}$,a5=$\frac{9}{5}$.
∵an=an-1+$\frac{1}{n(n-1)}$,∴an-an-1=$\frac{1}{n-1}-\frac{1}{n}$,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=$(\frac{1}{n-1}-\frac{1}{n})$+$(\frac{1}{n-2}-\frac{1}{n-1})$+…+$(1-\frac{1}{2})$+1=1-$\frac{1}{n}$+1=2-$\frac{1}{n}$,
點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
有20位同學(xué),編號從1至20,現(xiàn)在從中抽取4人作問卷調(diào)查,用系統(tǒng)抽樣方法確定所抽的編號為 ( )
A.2,4,6, 8 B.2,6,10,14
C.5,8,11,14 D.5,10,15,20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題
四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個結(jié)論:①y與x負(fù)相關(guān)且=2.347x-6.423;②y與x負(fù)相關(guān)且=-3.476x+5.648;③y與x正相關(guān)且=5.437x+8.493;④y與x正相關(guān)且=-4.326x-4.578.其中一定不正確的結(jié)論的序號是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
下列各式:
(1);
(2)已知,則;
(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對稱;
(4)函數(shù)的定義域是R,則m的取值范圍是;
(5)函數(shù)的遞增區(qū)間為.
正確的有 .(把你認(rèn)為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{2}$x+$\frac{\sqrt{2}π}{4}$ | B. | y=$\sqrt{2}$x-$\frac{\sqrt{2}π}{4}$ | C. | y=$\sqrt{2}$x-$\frac{\sqrt{2}π}{4}$+$\sqrt{2}$ | D. | y=$\sqrt{2}$x+$\frac{\sqrt{2}π}{4}$+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com