7.已知數(shù)列滿足a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2),寫出該數(shù)列的前5項(xiàng)及它的一個通項(xiàng)公式.

分析 a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2),可得a2=a1+$\frac{1}{2}$=$\frac{3}{2}$,同理可得:a3,a4,a5.由an=an-1+$\frac{1}{n(n-1)}$,可得an-an-1=$\frac{1}{n-1}-\frac{1}{n}$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:∵a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2),∴a2=a1+$\frac{1}{2}$=$\frac{3}{2}$,同理可得:a3=$\frac{5}{3}$,a4=$\frac{7}{4}$,a5=$\frac{9}{5}$.
∵an=an-1+$\frac{1}{n(n-1)}$,∴an-an-1=$\frac{1}{n-1}-\frac{1}{n}$,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=$(\frac{1}{n-1}-\frac{1}{n})$+$(\frac{1}{n-2}-\frac{1}{n-1})$+…+$(1-\frac{1}{2})$+1=1-$\frac{1}{n}$+1=2-$\frac{1}{n}$,

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

有20位同學(xué),編號從1至20,現(xiàn)在從中抽取4人作問卷調(diào)查,用系統(tǒng)抽樣方法確定所抽的編號為 ( )

A.2,4,6, 8 B.2,6,10,14

C.5,8,11,14 D.5,10,15,20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個結(jié)論:①y與x負(fù)相關(guān)且=2.347x-6.423;②y與x負(fù)相關(guān)且=-3.476x+5.648;③y與x正相關(guān)且=5.437x+8.493;④y與x正相關(guān)且=-4.326x-4.578.其中一定不正確的結(jié)論的序號是( )

A.①② B.②③ C.③④ D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

下列各式:

(1);

(2)已知,則

(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對稱;

(4)函數(shù)的定義域是R,則m的取值范圍是;

(5)函數(shù)的遞增區(qū)間為

正確的有 .(把你認(rèn)為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=sinx+cosx,若f′(x0)=$\sqrt{2}$,x0∈[-$\frac{π}{2}$,$\frac{π}{2}$],則函數(shù)在點(diǎn)(x0,f(x0))處的切線方程為( 。
A.y=$\sqrt{2}$x+$\frac{\sqrt{2}π}{4}$B.y=$\sqrt{2}$x-$\frac{\sqrt{2}π}{4}$C.y=$\sqrt{2}$x-$\frac{\sqrt{2}π}{4}$+$\sqrt{2}$D.y=$\sqrt{2}$x+$\frac{\sqrt{2}π}{4}$+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=a+$\frac{3}{x-b}$的反函數(shù)f-1(x)=1+$\frac{c}{2x+1}$,求常數(shù)a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N+),則a2017等于(  )
A.1B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|y=$\sqrt{x-1}$+$\sqrt{2-x}$},B={y|y=2x,x≥a}
(Ⅰ)若a=2,求(∁UA)∩B;
(Ⅱ)若(∁UA)∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則y的最大值為2,$\frac{y+1}{x+2}$的取值范圍是[$\frac{1}{3}$,$\frac{3}{2}$].

查看答案和解析>>

同步練習(xí)冊答案