【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當x>1時,f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).

【答案】(1)見解析(2)1

【解析】試題分析:(1)時,對求導, 得增區(qū)間,得減區(qū)間,進而求出函數(shù)的最小值值,即可證明;(2)t> ,求得函數(shù)g(x)=x[f(x)+t+1]的導函數(shù),研究其單調(diào)性,根據(jù)零點定理再利用導數(shù)即可判定零點的個數(shù).

試題解析:解:(1)t=1時,f(x)=x﹣﹣2lnx,x>0

∴f′(x)=1+==≥0,

∴f(x)在(1,+∞)上單調(diào)遞增,

∴f(x)>f(1)=1﹣1﹣0=0,

∴x>1,f(x)>0成立,

(2)當x(0,+∞),g(x)=tx2﹣(t+1)xlnx+(t+1)x﹣1

∴g′(x)=2tx﹣(t+1)lnx,

設m(x)=2tx﹣(t+1)lnx, ∴m′(x)=2t﹣=,

令m′(x)=0,得x=,

當0<x<時,m'(x)<0;當時x>,m'(x)>0.

∴g'(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.

∴g'(x)的最小值為g′()=(t+1)(1﹣ln),

∵t>,∴ =++<e.

∴g'(x)的最小值g′()=(t+1)(1﹣ln)>0,

從而,g(x)在區(qū)間(0,+∞)上單調(diào)遞增.

又g(1)=2t>0,又g()=+(6+2lnt)﹣1,

設h(t)=e3t﹣(2lnt+6).

則h′(t)=e3

令h'(t)=0得t=.由h'(t)<0,得0<t<;

由h'(t)>0,得t>

∴h(t)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.

∴h(t)min=h()=2﹣2ln2>0.

∴h(t)>0恒成立.∴e3t>2lnt+6,.

∴g()<+﹣1=++﹣1<++﹣1<0.

∴當t>時,函數(shù)g(x)恰有1個零點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意x∈(0,+∞),恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,其左、右頂點為、,橢圓與軸正半軸的交點為,的外接圓的圓心在直線上.

I)求橢圓的方程;

II)已知直線,是橢圓上的動點,,垂足為,是否存在點,使得為等腰三角形?若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強環(huán)保意識,某社團從男生中隨機抽取了60人,從女生中隨機抽取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計

男生

40

20

60

女生

20

30

50

總計

60

50

110

(1)試判斷是否有99%的把握認為環(huán)保知識是否優(yōu)秀與性別有關;

(2)為參加市舉辦的環(huán)保知識競賽,學校舉辦預選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學中選3人參加預選賽,已知在環(huán)保測試中優(yōu)秀的同學通過預選賽的概率為,若隨機變量表示這3人中通過預選賽的人數(shù),求的分布列與數(shù)學期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算:電費每月用電不超過100度時,按每度0.57元計算;每月用電量超過100度時,其中的100度仍按原標準收費,超過的部分每度按0.5元計算.

(Ⅰ)設月用電度時,應交電費元,寫出關于的函數(shù)關系式;

(Ⅱ)小明家第一季度繳納電費情況如下:

月份

一月

二月

三月

合計

交費金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側(cè)面BB1C1CABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC

(0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

(1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關還是負相關?

(2)請根據(jù)上表提供的數(shù)據(jù),求回歸直線方程;

(3)據(jù)此估計廣告費用為10時,銷售收入的值.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)為定義在R上的奇函數(shù).如圖是函數(shù)圖象的一部分,當0≤x≤2時,是線段OA;當x>2時,圖象是頂點為P(3,4)的拋物線的一部分.

(1)在圖中的直角坐標系中畫出函數(shù)f(x)的圖象;

(2)求函數(shù)f(x)在[2,+∞)上的解析式;

(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度x的一次函數(shù).

時,求函數(shù)的表達式.

當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1/小時).

查看答案和解析>>

同步練習冊答案