已知a,b,c,d∈R,則下列選項(xiàng)正確的是( 。
A、a>b⇒am2>bm2
B、
a
c
b
c
⇒a>b
C、a>b,c>d⇒a+c>b+d
D、a>b⇒
1
a
1
b
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:A.取m=0時即可判斷出;
B.c<0時可得a<b;
C.利用不等式的基本性質(zhì)即可得出.
D.a(chǎn)b<0時可得
1
a
1
b
解答: 解:A.m=0時不成立;
B.c<0時不成立;
C.∵a>b,c>d,∴a+c>b+d.
D.a(chǎn)b<0時不成立.
故選;C.
點(diǎn)評:本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
,
c
是任意的平面向量,給出下列命題:
①(
a
b
c
=(
b
c
a
,
②若
a
b
=
a
c
,則
a
⊥(
b
-
c
),
③(
a
+
b
)(
a
-
b
)=|
a
|2-|
b
|2,
④(
a
b
2=
a
2
b
2,
其中正確的是
 
.(寫出正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)A1B1C1D1-ABCD是正方體,若E、F分別是棱AB和棱BB1的中點(diǎn),則A1E和CF所成的角的余弦值為(  )
A、
2
5
B、
1
5
C、
1
3
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=-x2-2x},B={x|y=
x-a
},且A∪B=R,則實(shí)數(shù)a的最大值是( 。
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=6,
a
•(
b
-
a
)=2,則
a
b
的夾角是( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α表示平面,a,b表示直線,給出下列四個命題:
①a∥α,a⊥b⇒b∥α;      
②a∥b,a⊥α⇒b⊥α;
③a⊥α,a⊥b⇒b?α;     
④a⊥α,b⊥α⇒a∥b.
其中正確命題的序號是( 。
A、①②B、②④C、③④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為10,中心角為
π
5
的扇形的面積為(  )
A、2πB、6πC、8πD、10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于正項(xiàng)數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“給力”值,現(xiàn)知某數(shù)列的“給力”值為Hn=
2
n+2
,則數(shù)列{an}的通項(xiàng)公式為an=( 。
A、
1
2n
+1
B、
1
n
+1
C、
1
2
+n
D、2n-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位要建造一個長方體無蓋貯水箱,其容積為48m3,深為3m,如果池底每1m2的造價(jià)為40元,池壁每1m2的造價(jià)為20元,問怎樣設(shè)計(jì)水箱能使總造價(jià)最低,最低總造價(jià)是多少元?

查看答案和解析>>

同步練習(xí)冊答案