分析 先確定出C為鈍角,利用誘導(dǎo)公式及三角形的內(nèi)角和定理化簡(jiǎn)已知等式的左邊,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),得到tanC=-2tanA,化簡(jiǎn)tanB=-tan(A+C)為$\frac{1}{\frac{1}{tanA}+2tanA}$,利用基本不等式求出tanB的最大值.
解答 解:∵△ABC的內(nèi)角A,B滿足$\frac{sinB}{sinA}$=cos(A+B),且sinA>0,sinB>0,
∴$\frac{sinB}{sinA}$=-cosC>0,即cosC<0,∴C為鈍角,sinB=-sinAcosC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+cosAsinC=-sinAcosC,即cosAsinC=-2sinAcosC,
∴tanC=-2tanA,∴tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$
=-$\frac{-tanA}{1+{2tan}^{2}A}$=$\frac{1}{\frac{1}{tanA}+2tanA}$≤$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
當(dāng)且僅當(dāng)$\frac{1}{tanA}$=2tanA時(shí),取等號(hào),故tanB的最大值為$\frac{\sqrt{2}}{4}$,
故答案為:$\frac{{\sqrt{2}}}{4}$
點(diǎn)評(píng) 此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正弦、正切函數(shù)公式,以及基本不等式的運(yùn)用,熟練掌握基本關(guān)系及公式是解本題的關(guān)鍵,本題考察了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,2) | C. | (0,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com