5.若函數(shù)f(x)=ax-2+2(a>0,且a≠1)的圖象恒過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是(2,3);函數(shù)g(x)=loga(x+1)-2(a>0,且a≠1)的圖象恒過定點(diǎn)M,則M點(diǎn)的坐標(biāo)是(0,-2).

分析 根據(jù)a0=1和loga1=0得出結(jié)論.

解答 解:(1)令x-2=0得x=2,f(2)=a0+2=3,
∴f(x)的圖象恒過點(diǎn)(2,3);
(2)令x+1=1得x=0,g(0)=loga1-2=-2,
∴g(x)的圖象恒過點(diǎn)(0,-2).
故答案為(2,3),(0,-2).

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3與$y={x^{\frac{1}{2}}}$圍成的區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為$\frac{5}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)a,b,c∈{1,2,3,4,5,6},若以a,b,c為三條邊的長(zhǎng)可以構(gòu)成一個(gè)等腰(含等邊)三角形,則這樣的三角形有27個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{mx}{lnx}$,曲線y=f(x)在點(diǎn)(e2,f(e2))處的切線與直線2x+y+2=0垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的解析式及函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)是否存在常數(shù)k,使得對(duì)于定義域內(nèi)的任意x,$f(x)>\frac{k}{lnx}+2\sqrt{x}$恒成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知偶函數(shù)f(x)在[0,+∞)上是單調(diào)函數(shù),且圖象經(jīng)過A(0,-1),B(3,1)兩點(diǎn),f(x)<1的解集為(-3,3) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;命題q:函數(shù)y=(2a2-a)x為增函數(shù).命題r:a滿足$\frac{2a-1}{a-2}≤1$.
(1)若p∨q是真命題且p∧q是假題.求實(shí)數(shù)a的取值范圍.
(2)試判斷命題¬p是命題r成立的一個(gè)什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a,b是正數(shù),直線2ax+by-2=0被圓x2+y2=4截得的弦長(zhǎng)為2$\sqrt{3}$,則t=a$\sqrt{1+2^{2}}$取得最大值時(shí)a的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}的前幾項(xiàng)為$\frac{1}{2},3,\frac{11}{2},8,\frac{21}{2}…$,則此數(shù)列的通項(xiàng)可能是(  )
A.${a_n}=\frac{5n-4}{2}$B.${a_n}=\frac{3n-2}{2}$C.${a_n}=\frac{6n-5}{2}$D.${a_n}=\frac{10n-9}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案