分析 (1)根據(jù)函數(shù)解析式,列出不等式組$\left\{\begin{array}{l}{x-4≥0}\\{|x|-5≠0}\end{array}\right.$,求解集即可;
(2)根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列不等式求解集即可;
(3)根據(jù)二次根式的被開方數(shù)大于或等于0,列不等式求解集.
解答 解:(1)$y=\frac{{\sqrt{x-4}}}{|x|-5}$,∴$\left\{\begin{array}{l}{x-4≥0}\\{|x|-5≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≥4}\\{x≠±5}\end{array}\right.$,即x≥4且x≠5,
∴函數(shù)y的定義域是[4,5)∪(5,+∞);
(2)y=loga(2-x)(a>0且a≠1),
∴2-x>0,
解得x<2,
∴函數(shù)y的定義域是(-∞,2);
(3)$y=\sqrt{1-{{({\frac{1}{2}})}^x}}$,∴1-${(\frac{1}{2})}^{x}$≥0,
即${(\frac{1}{2})}^{x}$≤1,
解得x≥0,
∴函數(shù)y的定義域是[0,+∞).
點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | 1 | D. | $\frac{{\sqrt{17}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9 | B. | -4 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{9}$ | B. | $\frac{π}{9}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com