1.把二進(jìn)制數(shù)101011(2)化為十進(jìn)制數(shù)(  )
A.41B.43C.45D.46

分析 由題意知101 011(2)=1×20+1×21+0×22+1×23+0×24+1×25計(jì)算出結(jié)果即可選出正確選項(xiàng).

解答 解:${101011_{(2)}}=1×{2^5}+0×{2^4}+1×{2^3}+0×{2^2}+1×2+1×{2^0}=43$.
故選:B.

點(diǎn)評(píng) 本題以進(jìn)位制的轉(zhuǎn)換為背景考查算法的多樣性,解題的關(guān)鍵是熟練掌握進(jìn)位制的轉(zhuǎn)化規(guī)則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)積為Tn,即Tn=a1a2…an
(1)若數(shù)列{an}為首項(xiàng)為2016,公比為$q=-\frac{1}{2}$的等比數(shù)列,
①求Tn的表達(dá)式;②當(dāng)n為何值時(shí),Tn取得最大值;
(2)當(dāng)n∈N*時(shí),數(shù)列{an}都有an>0且${T_n}•{T_{n+1}}={({a_1}{a_n})^{\frac{n}{2}}}{({a_1}{a_{n+1}})^{\frac{n+1}{2}}}$成立,求證:{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)的定義域?yàn)椋?$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知冪函數(shù)f(x)=xα圖象過點(diǎn)$(\sqrt{2},2)$,則f(9)=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-x2+2x+3,x∈[-1,2)
(1)畫出函數(shù)f(x)的圖象; 
(2)根據(jù)函數(shù)f(x)的圖象寫出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)于任意實(shí)數(shù)x,<x>表示不小于x的最小整數(shù),如<1.2>=2,<-0.2>=0.定義在R上的函數(shù)f(x)=<x>+<2x>,若集合A={y|y=f(x),-1≤x≤0},則集合A中所有元素的和為( 。
A.-3B.-4C.-5D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐C-ABB1A1內(nèi)接于圓柱OO1,且A1A,B1B都垂直于底面圓O,BC過底面圓心O,M,N分別是棱AA1,CB1的中點(diǎn),MN⊥平面CBB1
(1)證明:MN∥平面ABC;
(2)求四棱錐C-ABB1A1與圓柱OO1的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=-x2+2x+3在區(qū)間[0,4)上的值域是(  )
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線y=x+1與橢圓mx2+my2=1(m>n>0)相交于A,B兩點(diǎn),若弦AB的中點(diǎn)的橫坐標(biāo)等于-$\frac{1}{3}$,則雙曲線$\frac{y^2}{m^2}-\frac{x^2}{n^2}$=1的離心率等于( 。
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案