分析 作出不等式對(duì)應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域的形狀,求出交點(diǎn)坐標(biāo),結(jié)合三角形的面積公式,建立方程即可得到結(jié)論.
解答 解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則對(duì)應(yīng)區(qū)域?yàn)槿切蜛BC.
由$\left\{\begin{array}{l}{x=a}\\{x+2y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=a}\\{y=-\frac{a}{2}}\end{array}\right.$,即B(a,-$\frac{a}{2}$),
由$\left\{\begin{array}{l}{x=a}\\{2x-y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=a}\\{y=2a}\end{array}\right.$,即A(a,2a),
則|AB|=2a-(-$\frac{a}{2}$)=$\frac{5a}{2}$,
則三角形的面積S=$\frac{1}{2}$×$\frac{5a}{2}$×a=5,
則a2=4,則a=2,
故答案為:2
點(diǎn)評(píng) 本題主要考查二元一次不等式組表示平面區(qū)間,考查學(xué)生的作圖能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com