7.在△ABC中,AB=3,AC=4.若△ABC的面積為$3\sqrt{3}$,則BC的長是$\sqrt{13}$或$\sqrt{37}$.

分析 利用三角形的面積公式求出角A,再利用余弦定理求出邊長BC.

解答 解:△ABC的面積為3$\sqrt{3}$,且AB=3,AC=4,
所以$\frac{1}{2}$×3×4×sinA=3$\sqrt{3}$,
所以sinA=$\frac{\sqrt{3}}{2}$,
所以A=60°或120°;
A=60°時,cosA=$\frac{1}{2}$,
BC=$\sqrt{{AB}^{2}{+AC}^{2}-2AB•AC•cosA}$=$\sqrt{{3}^{2}{+4}^{2}-2×3×4×\frac{1}{2}}$=$\sqrt{13}$;
A=120°時,cosA=-$\frac{1}{2}$,
BC=$\sqrt{{3}^{2}{+4}^{2}-2×3×4×(-\frac{1}{2})}$=$\sqrt{37}$;
綜上,BC的長是$\sqrt{13}$或$\sqrt{37}$.
故答案為:$\sqrt{13}$或$\sqrt{37}$.

點評 本題考查了三角形面積公式和余弦定理的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},則N∩(∁IM)=( 。
A.{0}B.{-3,-4}C.{-1,-2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.圓O的參數(shù)方程為$\left\{\begin{array}{l}x=-\frac{\sqrt{2}}{2}+rcosθ\\ y=-\frac{\sqrt{2}}{2}+rsinθ\end{array}$(θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(biāo)(ρ≥0,0≤θ<2π );
(Ⅱ)當(dāng)r為何值時,圓O上的點到直線l的最大距離為2+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$則z=ax+y的最小值為1,則正實數(shù)a的值為( 。
A.10B.8C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐P-ABC為鱉臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點都在球O的球面上,則球O的表面積為(  )
A.B.12πC.20πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直線l經(jīng)過曲線C的左焦點F.
( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=2sin(\frac{π}{4}-2x)$,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A.$[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$B.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$
C.$[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$D.$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量 y(單位:kg)與它“相近”作物的株數(shù) x具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過 1m),并分別記錄了相近作物的株數(shù)為 1,2,3,5,6,7時,該作物的年收獲量的相關(guān)數(shù)據(jù)如表:
x123567
y605553464541
(1)求該作物的年收獲量 y關(guān)于它“相近”作物的株數(shù)x的線性回歸方程;
(2)農(nóng)科所在如圖所示的直角梯形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,圖中
每個小正方形的邊長均為 1,若從直角梯形地塊的邊界和內(nèi)部各隨機(jī)選取一株該作物,求這兩株作物“相
近”且年產(chǎn)量僅相差3kg的概率.
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=bx+a的斜率和截距的最小二乘估
計分別為,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知曲線y=x3在點(1,1)處的切線與直線ax+y+1=0垂直,則a的值是( 。
A.-1B.1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案