19.已知函數(shù)$f(x)=2sin(\frac{π}{4}-2x)$,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A.$[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$B.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$
C.$[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$D.$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.

解答 解:∵函數(shù)$f(x)=2sin(\frac{π}{4}-2x)$=-2sin(2x-$\frac{π}{4}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,
可得函數(shù)的減區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z,
故選:D.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),|AF1|=3|BF1|,若cos∠AF2B=$\frac{3}{5}$,則橢圓E的離心率為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓C:x2+y2=25,過(guò)點(diǎn)M(-2,3)作直線l交圓C于A,B兩點(diǎn),分別過(guò)A,B兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)N時(shí),則點(diǎn)N的軌跡方程為2x-3y-25=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,AB=3,AC=4.若△ABC的面積為$3\sqrt{3}$,則BC的長(zhǎng)是$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={x|x2<4},N={x|x<1},則M∩N=( 。
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知某蔬菜商店買進(jìn)的土豆x(噸)與出售天數(shù)y(天)之間的關(guān)系如表所示:
x234567912
y12334568

(Ⅰ)請(qǐng)根據(jù)表中數(shù)據(jù)在所給網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效數(shù)字);
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計(jì)可以銷售多少天(計(jì)算結(jié)果保留整數(shù))?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為 1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱為斐波那契數(shù)列.則(a1a3+a2a4+a3a5+a4a6+a5a7+a6a8)-(a22+a32+a42+a52+a62+a72)=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若定義域?yàn)镽的偶函數(shù)y=f(x)滿足f(x+2)+f(x)=0,且當(dāng)x∈[0,2]時(shí),f(x)=2-x2,則方程f(x)=2sinx在[-3π,3π]內(nèi)根的個(gè)數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若從集合{1,2,3,4,5}中隨機(jī)地選出三個(gè)元素,則滿足其中兩個(gè)元素的和等于第三個(gè)元素的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案