由大于-8小于20的奇數(shù)所組成的集合( 。
A、{x∈Z|-8<x<20}
B、{x|-8<x<20,x=2k+1,k∈N}
C、{x|-8<x<20}
D、{x|-8<x<20,x=2k+1,k∈Z}
考點:集合的表示法
專題:集合
分析:首先奇數(shù)表示為:x=2k+1,k∈Z,然后再滿足奇數(shù)大于-8小于20,即-8<x<20,所以大于-8小于20的奇數(shù)所組成的集合是{x|-8<x<20,x=2k+1,k∈Z},所以D正確.
解答: 解:A.所表示的是大于-8小于20的整數(shù);
B.表示大于-8小于20的正奇數(shù);
C.表示大于-8小于20的實數(shù);
D.表示大于-8小于20的奇數(shù),即該選項正確.
故選D.
點評:考查奇數(shù)的表示形式:x=2k+1,k∈Z,以及描述法表示集合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20是等差數(shù)列4,6,8…的(  )
A、第8項B、第9項
C、第10項D、第11項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-3x+2
的單調(diào)遞增區(qū)間為( 。
A、[
3
2
,+∞)
B、(-∞,
3
2
]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tanωx的最小正周期為
π
2
,則正實數(shù)ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={a2,a+1,-1},B={2a-1,|a-2|,3a2-4},A∩B={-1},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i,則
1+z
1-z
=( 。
A、2-iB、2+i
C、-1+2iD、1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x(x<1)
1
2
(x≥1)
,若0<f (x0)<1,則x0的取值范圍是(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,1]
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P={x|2≤x≤6},Q={x|a≤x≤a+1}若Q⊆P,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,底面abcd是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD,設(shè)E、F分別為PC、BD的中點.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求空間幾何體BCDP的體積.

查看答案和解析>>

同步練習(xí)冊答案