17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤\sqrt{3})}\\{\sqrt{4-{x}^{2}}(\sqrt{3}<x<2)}\\{0\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≥2)}\end{array}\right.$,則${∫}_{-1}^{2010}$f(x)dx的值為( 。
A.$\frac{π}{3}$+$\frac{2+\sqrt{3}}{2}$B.$\frac{π}{2}$+$\frac{2+\sqrt{3}}{2}$C.$\frac{π}{6}$+$\frac{2+\sqrt{3}}{2}$D.$\frac{π}{2}$+$\frac{1+\sqrt{3}}{2}$

分析 將被積函數(shù)分段,利用定積分的幾何意義及定積分的計算,即可求得答案.

解答 解:由f(x)=$\left\{\begin{array}{l}{1\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤\sqrt{3})}\\{\sqrt{4-{x}^{2}}(\sqrt{3}<x<2)}\\{0\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≥2)}\end{array}\right.$,
則${∫}_{-1}^{2010}$f(x)dx=${∫}_{-1}^{\sqrt{3}}$1dx+${∫}_{\sqrt{3}}^{2}$$\sqrt{4-{x}^{2}}$dx+${∫}_{2}^{2010}$0dx,
由${∫}_{\sqrt{3}}^{2}$$\sqrt{4-{x}^{2}}$dx表示陰影部分的面積,則陰影部分的面積S=$\frac{1}{2}$×$\frac{π}{3}$×2-$\frac{1}{2}$×$\sqrt{3}$×1=$\frac{π}{3}$-$\frac{\sqrt{3}}{2}$,
${∫}_{-1}^{\sqrt{3}}$1dx=x${丨}_{-1}^{\sqrt{3}}$=$\sqrt{3}$-(-1)=$\sqrt{3}$+1,
${∫}_{2}^{2010}$0dx=0,
∴${∫}_{-1}^{2010}$f(x)dx=$\frac{π}{3}$-$\frac{\sqrt{3}}{2}$+$\sqrt{3}$+1=$\frac{π}{3}$+$\frac{2+\sqrt{3}}{2}$,
故選A.

點評 本題考查了分段函數(shù)的定積分,當(dāng)被積函數(shù)為分段函數(shù)時,也需函數(shù)的定義的分段情形相應(yīng)的逐段積分,考查定積分的幾何意義,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校高中部,高一有6個班,高二有7個班,高三有8個班,學(xué)校利用星期六組織學(xué)生到某廠進(jìn)行社會實踐活動.
(1)任選1個班的學(xué)生參加社會實踐,有多少種不同的選法?
(2)三個年級各選一個班的學(xué)生參加社會實踐,有多少種不同的選法?
(3)選2個班的學(xué)生參加社會實踐,要求這2個班不同年級,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)$a={({\frac{1}{2}})^{0.1}},b={({\frac{1}{2}})^{-0.1}},c={({\frac{1}{2}})^{0.2}}$的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,已知圓C:(x-a)2+(y-a+2)2=1,點A(0,-3),若圓C上存在點M,滿足|AM|=2|MO|,則實數(shù)a的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.執(zhí)行如圖的偽代碼,輸出的結(jié)果是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,若a3+a5+a7+a9+a11=45,S3=-3,那么a5等于( 。
A.4B.5C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.袋中有大小相同的3個紅球,5個白球,從中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得紅球的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{3}{8}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.sin 20°cos 10°+sin 10°sin 70°的值是( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an+1-2an}是公比為2的等比數(shù)列,其中a1=1,a2=4.
(1)證明:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)記Cn=$\frac{2{a}_{n}-2n}{n}$(n≥2),證明:$\frac{1}{2}-$($\frac{1}{2}$)n<$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}$+…+$\frac{1}{{c}_{n}}$≤1-($\frac{1}{2}$)n-1

查看答案和解析>>

同步練習(xí)冊答案