6.設$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,若$\overrightarrow a⊥\overrightarrow b$,則tanθ=$\frac{1}{2}$.

分析 根據(jù)兩向量垂直時數(shù)量積為0,列方程求出tanθ的值.

解答 解:設$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,
若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow{a}$•$\overrightarrow$=0
-cosθ+2sinθ=0
∴$\frac{sinθ}{cosθ}$=tanθ=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查了平面向量數(shù)量積的應用問題,也考查了同角的三角函數(shù)關系應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|x2-2x-3≤0},B={x|x>0},則A∩B=(  )
A.(0,3]B.(0,3)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足a=1,$\frac{sin(2A+B)}{sinA}=2(1-cosC)$.
(1)求b的值;
(2)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率e=$\frac{{\sqrt{2}}}{2}$,左頂點為A(-2,0).
(1)求橢圓E的方程;
(2)已知O為坐標原點,B,C是橢圓E上的兩點,連接AB的直線平行OC交y軸于點D,證明:|AB|$,\;\;\sqrt{2}|{OC}|\;\;,\;\;|{AD}$|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ(φ>0)個單位,所得的圖象關于y軸對稱,則φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{8}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}$,直線l:y=(k-2)x-k+1,且k∈Z.
(1)若$?{x_0}∈[{e,{e^2}}]$,使得f(x0)>0成立,求實數(shù)a的取值范圍;
(2)設a=0,當x>1時,函數(shù)f(x)的圖象恒在直線l的上方,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,它的表面積為(  )
A.66πB.51πC.48πD.33π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知m,n是兩條不同的直線,α,β是兩個不重合的平面.命題p:若α∩β=m,m⊥n,則n⊥α;命題q:若m∥α,m?β,α∩β=n,則m∥n.那么下列命題中的真命題是( 。
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在△AOC中,∠O=90°,∠C=30°,B是邊OA上一點,D是邊OC上一動點,且當CD=100($\sqrt{3}$-1)時,∠ADO=45°
(1)求OA的長;
(2)當AB=52,tan∠ADB=$\frac{13\sqrt{3}}{60}$時,求CD的長.

查看答案和解析>>

同步練習冊答案