14.以下命題中正確的是(  )
A.以直角三角形的一直角邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)
C.有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫做棱錐
D.圓錐的側(cè)面展開圖為扇形,這個(gè)扇形的半徑為圓錐底面圓的半徑

分析 根據(jù)空間幾何體的結(jié)構(gòu)特征進(jìn)行判斷.

解答 解:對(duì)于A,由圓錐的定義可知A正確;
對(duì)于B,若旋轉(zhuǎn)軸不是直角梯形的直腰,則旋轉(zhuǎn)體不是圓臺(tái),故B錯(cuò)誤;
對(duì)于C,若其余各面三角形沒有公共頂點(diǎn),則幾何體不是棱錐,故C錯(cuò)誤;
對(duì)于D,圓錐的側(cè)面展開圖的半徑是圓錐的母線,故D錯(cuò)誤,
故選A.

點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)體的結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過原點(diǎn)作曲線y=ex的切線,則切點(diǎn)的坐標(biāo)為(1,e),切線的斜率為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α為第三象限角,$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
(1)化簡(jiǎn)f(α);
(2)若$f(α)=\frac{4}{5}$,求tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若角A,B,C的對(duì)邊分別為a,b,c,且$\sqrt{2}$a=2bsinA,則角B=$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系中,已知角θ的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線y=3x上,則sin2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知下列兩個(gè)命題:
命題p:實(shí)系數(shù)一元二次方程x2+mx+2=0有虛根;
命題q:關(guān)于x的方程:2x2-4(m-1)x+m2+7=0(m∈R)的兩個(gè)虛根的模的和不大于$4\sqrt{2}$,
若p、q均為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在邊長(zhǎng)為3的正△ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足AE=CF=CP=1(如圖1).將△AEF沿EF折起到△A1EF的位置,連接A1B、A1P(如圖2),使平面A1EP⊥平面BPE.
(1)求證:A1E⊥平面BEP;
(2)求點(diǎn)C到平面A1FP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列說法中:
①若m⊥α,m⊥β,則α∥β
②若m∥α,α∥β,則m∥β
③若m⊥α,m∥β,則α⊥β
④若m∥α,n⊥m,則n⊥α
所有正確說法的序號(hào)是( 。
A.②③④B.①③C.①②D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案