精英家教網 > 高中數學 > 題目詳情

已知函數
(Ⅰ)求函數的最小值和最小正周期;
(Ⅱ)設的內角、、的對邊分別為、,滿足,,求、的值.

(Ⅰ)最小值為,最小正周期為;(Ⅱ).

解析試題分析:(Ⅰ)將原函數化為一角一函數形式解答;(Ⅱ)由得出,然后根據條件,利用余弦定理得,聯立解出.
試題解析:(Ⅰ)  3分
的最小值是, 最小正周期是;     6分
(Ⅱ),則,     7分
, ,所以,
所以,        9分
因為,所以由正弦定理得       10分
由余弦定理得,即     11分
由①②解得:,             12分
考點:三角函數化簡、三角函數的周期、正弦定理、余弦定理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,游客在景點處下山至處有兩條路徑.一條是從沿直道步行到,另一條是先從沿索道乘纜車到,然后從沿直道步行到.現有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到.假設纜車勻速直線運動的速度為,索道長為,經測量,.

(1)求山路的長;
(2)假設乙先到,為使乙在處等待甲的時間不超過分鐘,乙步行的速度應控制在什么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在區(qū)間上的函數的圖象關于直線對稱,當時函數圖象如圖所示

(Ⅰ)求函數的表達式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常數的值,使得上恒成立;若存在,求出 的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,的部分圖象如圖所示.

(Ⅰ)求函數的解析式;
(Ⅱ)求函數的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求的最小正周期和最大值;
(2)若為銳角,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為使能在時取得最大值的最小正整數.
(1)求的值;
(2)設的三邊長、、滿足,且邊所對的角的取值集合為,當時,求的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數d的最大值為2,是集合中的任意兩個元素,且的最小值為.
(1)求函數的解析式及其對稱軸;
(2)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且當時,的最小值為2.
(1)求的值,并求的單調增區(qū)間;
(2)將函數的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的倍,再把所得圖象向右平移個單位,得到函數,求方程在區(qū)間上的所有根之和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a,b,c分別為ΔABC三個內角A,B,C的對邊長,.
(Ⅰ)求角A的大;
(II)若a=,ΔABC的面積為1,求b,c.

查看答案和解析>>

同步練習冊答案