已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和.
(1) 2-n
(2)
(1)設(shè)等差數(shù)列{an}的公差為d,由已知條件可得
a1+d=0,2a1+12d=-10a1=1,d=-1
故數(shù)列{an}的通項(xiàng)公式為an=2-n (2) 設(shè)數(shù)列{}的前n項(xiàng)各為Sn,即Sn=a1++…+  ①
=++…+     ②
所以,當(dāng)時(shí),①-②得
= a1++…+
=1-(+…+)-
=1-(1-)-=
即Sn=
綜上,數(shù)列數(shù)列{}的前n項(xiàng)和Sn=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)為等差數(shù)列的前項(xiàng)和,已知.
(1)求;
(2)設(shè),數(shù)列的前項(xiàng)和記為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某產(chǎn)品具有一定的時(shí)效性,在這個(gè)時(shí)效期內(nèi),由市場(chǎng)調(diào)查可知,在不做廣告宣傳且每件獲利a元的前提下,可賣出b件;若做廣告宣傳,廣告費(fèi)為n千元比廣告費(fèi)為千元時(shí)多賣出件。
(1)試寫出銷售量與n的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),廠家應(yīng)該生產(chǎn)多少件產(chǎn)品,做幾千元的廣告,才能獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
求第2行和第3行的通項(xiàng)公式;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于)的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù)?,當(dāng)時(shí),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項(xiàng)和為,求(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}滿足a42+a72+2a4a7=9,則其前10項(xiàng)之和為(        )
A.-9B.-15 C.15D.±15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)是公差為的等差數(shù)列,,則(   )
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足:對(duì)于都有,若,則的通項(xiàng)公式為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列1,,,,3,,…,,…,是這個(gè)數(shù)列的(   )
A.第11項(xiàng)B.第12項(xiàng)C.第13項(xiàng)D.第21項(xiàng)

查看答案和解析>>

同步練習(xí)冊(cè)答案