精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)某品牌的汽車4S店,對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:已知分3期付款的頻率為0.2,4S店經銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元,用表示經銷一輛汽車的利潤。

付款方工
分1期
分2期
分3期
分4期
分5期
頻數
40
20

10

(1)求上表中的值;(2)若以頻率作為概率,求事件A:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的頻率P(A);(3)求的分布列及數學期望E

(1)(2)(3)


1
1.5
2
P
0.4
0.4
0.2

解析試題分析:(1)由,,…2分
(2)記分期付款的期數為,依題意得
 …………5分
則“購買該品牌汽車的3位顧客中至多有1位采用3期付款”的概率;…………7分
(3)的可能取值為1,1.5,2(單位:萬元)
…………8分
…………9分
…………10分  


1
1.5
2
P
0.4
0.4
0.2
的數學期望(萬元)(萬元)……12分
考點:概率期望分布列
點評:頻率,頻數與樣本容量的關系:頻率=頻數/樣本容量;寫分布列首先找到隨機變量可取的值,然后結合題目背景依次求出各個概率,期望等于隨機變量的值與相應概率的成績在求其和

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

抽簽方式決定出場順序.通過預賽,選拔出甲、乙等五支隊伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數記為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了解甲、乙兩廠的產品質量,采用分層抽樣的方法從甲、乙兩廠生產的產品中分別抽取14件和5件,測量產品中的微量元素,的含量(單位:毫克)下表是乙廠的5件產品的測量數據:

編號
1
2
3
4
5

160
178
166
175
180

75
80
77
70
81
(1)已知甲廠生產的產品共有98件,求乙廠生產的產品數量;
(2)若為次品,從乙廠抽出的上述5件產品中,有放回的隨機抽取1件產品,抽到次品則停止抽取,否則繼續(xù)抽取,直到抽出次品為止,但抽取次數最多不超過3次,求抽取次數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
甲、乙兩運動員進行射擊訓練,已知他們擊中的環(huán)數都穩(wěn)定在8,9,10環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數的概率如表:

 
8環(huán)
9環(huán)
10環(huán)

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙兩運動員各射擊1次,求甲運動員擊中8環(huán)且乙運動員擊中9環(huán)的概率;
(Ⅱ)若甲、乙兩運動員各自射擊2次,求這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

A、B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗。每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個試驗組中,服用A有效的小白鼠的只數比服用B有效的多,就稱該試驗組為甲類組。設每只小白鼠服用A有效的概率為,服用B有效的概率為。
(Ⅰ)求一個試驗組為甲類組的概率;
(Ⅱ)觀察3個試驗組,用表示這3個試驗組中甲類組的個數,求的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測試,每位測試者最多有三次機會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否則就一直測試到第三次為止。設每位工人每次測試通過的概率依次為0.2,0.5,0.5,每次測試相互獨立。
(1)求工人甲在這次上崗測試中參加考試次數為2、3的概率分別是多少?
(2)若有4位工人參加這次測試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一學生參加某高校的自主招生考試,須依次參加A、B、C、D、E五項考試,如果前四項中有兩項不合格或第五項不合格,則該考生就被淘汰,考試即結束;考生未被淘汰時,一定繼續(xù)參加后面的考試。已知每一項測試都是相互獨立的,該生參加A、B、C、D四項考試不合格的概率均為,參加第五項不合格的概率為。
⑴求該生被錄取的概率;
⑵記該生參加考試的項數為,求的分布列和期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

袋中有大小、形狀相同的紅、黑球各一個,現一次有放回地隨機摸取3次,每次摸取一個球。
(1)試問:一共有多少種不同的結果?請列出所有可能的結果;
(2)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組,第2組,第3組,第4組,第5組得到的頻率分布直方圖如圖所示
(1)分別求第3,4,5組的頻率;
(2)若該校決定在第3,4,5 組中用分層抽樣的方法抽取6名學生進入第二輪面試,
①已知學生甲和學生乙的成績均在第3組,求學生甲和學生乙同時進入第二輪面試的概率;
②學校決定在這6名學生中隨機抽取2名學生接受考官的面試,第4組中有名學生被考官面試,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案