3.關(guān)于殘差和殘差圖,下列說法正確的是( 。
(1)殘差就是隨機(jī)誤差
(2)殘差圖的縱坐標(biāo)是殘差
(3)殘差點(diǎn)均勻分布的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高
(4)殘差點(diǎn)均勻分布的帶狀區(qū)域的寬度越窄,說明模型擬合精度越低.
A.(1)(2)B.(3)(4)C.(2)(3)D.(2)(4)

分析 在殘差圖中,殘差點(diǎn)的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高;R2越接近于1,擬合效果越好.

解答 解:因?yàn)樵跉埐顖D中,殘差點(diǎn)的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高;
殘差圖的縱坐標(biāo)是殘差,即(2)(3)正確,
故選C.

點(diǎn)評(píng) 本題考查了模型擬合精度的判斷方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,矩形ABCD中,AB=4,AD=2,E在DC邊上,且DE=1,將△ADE沿AE折到△AD'E的位置,使得平面AD'E⊥平面ABCE.
(Ⅰ)求證:AE⊥BD';
(Ⅱ)求二面角D'-AB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若等差數(shù)列{an}的前n項(xiàng)和Sn滿足S4≤4,S6≥12,則a4的最小值為( 。
A.2B.$\frac{7}{2}$C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=x+ln(x+1),那么f′(0)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-3y+2≤0\\ y-2≤0\end{array}\right.$,則z=-x+y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡(jiǎn)單隨機(jī)抽樣的方法在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生602080
北方學(xué)生101020
合計(jì)7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來了解該校大學(xué)新生的飲食習(xí)慣,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的多面體中,面ABCD是平行四邊形,四邊形BDEF是矩形.
(1)求證:AE∥平面BFC
(2)若AD⊥DE,AD=DE=1,AB=2,∠BDA=60°,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.曲線C:$\left\{\begin{array}{l}{x=secθ}\\{y=tanθ}\end{array}\right.$(θ為參數(shù))的兩個(gè)頂點(diǎn)之間的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.高二(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為8,22,50的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為( 。
A.32B.33C.35D.36

查看答案和解析>>

同步練習(xí)冊(cè)答案