18.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的前2016項(xiàng)之和S2016=( 。
A.22016B.22015-1C.22016-1D.22017-1

分析 根據(jù)等比數(shù)列的通項(xiàng)公式和數(shù)列{an}的前公式進(jìn)行計(jì)算即可.

解答 解:在等比數(shù)列{an}中,若4a1+a4=9,a2a3=8,
則a1+a1q3=9,
a2a3=8,
則a1q2•a1q=8
解得q=2,a1=1.
則${S}_{2016}=\frac{(1-{2}^{2016})}{1-2}={2}^{2016}-1$.
故選:C

點(diǎn)評(píng) 本題主要考查等比數(shù)列的應(yīng)用,根據(jù)已知建立條件關(guān)系求出公比和首項(xiàng)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知F是雙曲線C:y2-mx2=3m(m>0)的一個(gè)焦點(diǎn),則點(diǎn)F到C的一條漸近線的距離為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知F1和F2分別是橢圓C:$\frac{{x}^{2}}{2}$+y2=1的左焦點(diǎn)和右焦點(diǎn),點(diǎn)P(x0,y0)是橢圓C上一點(diǎn),切滿足∠F1PF2≥60°,則x0的取值范圍是(  )
A.[-1,1]B.[-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$]C.[1,$\sqrt{2}$]D.[$\frac{2\sqrt{3}}{3}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個(gè)焦點(diǎn),點(diǎn)P(不在x軸上)為橢圓上的一點(diǎn),且滿足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,則橢圓的離心率的取值范圍是( 。
A.$[{\frac{{\sqrt{3}}}{3},1})$B.$[{\frac{1}{3},\frac{1}{2}}]$C.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)ϕ(x)是定義在[m,n]上的函數(shù),若存在r∈(m,n),使得ϕ(x)在[m,r]上單調(diào)遞增,在[r,n]上單調(diào)遞減,則稱ϕ(x)為[m,n]上的F函數(shù).
(1)已知$ϕ(x)=\frac{x+a}{e^x}$為[1,2]上的F函數(shù),求a的取值范圍;
(2)設(shè)$ϕ(x)=px-(\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{{p{x^5}}}{5})$,其中p>0,判斷ϕ(x)是否為[0,p]上的F函數(shù)?
(3)已知ϕ(x)=(x2-x)(x2-x+t)為[m,n]上的F函數(shù),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{lnx}{x}$,關(guān)于x的不等式f2(x)-af(x)>0有且只有三個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{ln5}{5}$,$\frac{ln2}{2}$)B.[$\frac{ln5}{5}$,$\frac{ln3}{3}$)C.($\frac{ln5}{5}$,$\frac{ln2}{2}$]D.($\frac{ln5}{5}$,$\frac{ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

在一個(gè)盒子里裝有6張卡片,上面分別寫著如下定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2018010206095323576255/SYS201801020610401439989407_ST/SYS201801020610401439989407_ST.001.png">的函數(shù):

,,,,

(1)現(xiàn)在從盒子中任意取兩張卡片,記事件為“這兩張卡片上函數(shù)相加,所得新函數(shù)是奇函數(shù)”,求事件的概率;

(2)從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是偶函數(shù)則停止抽取,否則繼續(xù)進(jìn)行,記停止時(shí)抽取次數(shù)為,寫出的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z滿足z=$\frac{2+ai}{1+i}$(i為虛數(shù)單位,a∈R),若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于直角坐標(biāo)平面內(nèi)的直線y=-x上,則a的值為( 。
A.0B.lC.-lD.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤1009B.i>1009C.i≤1010D.i>1010

查看答案和解析>>

同步練習(xí)冊(cè)答案