3.在△ABC中,O為其內(nèi)部一點(diǎn),且滿足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,則△AOB和△AOC的面積比是(  )
A.3:4B.3:2C.1:1D.1:3

分析 設(shè)M為AC的中點(diǎn),則由向量加法的平行四邊形法則可得$\overrightarrow{OA}$+$\overrightarrow{OC}$=2$\overrightarrow{OM}$,結(jié)合題意可得2$\overrightarrow{OM}$=-3$\overrightarrow{OM}$,由數(shù)乘向量的性質(zhì)可得B,O,M三點(diǎn)共線,且2OM=3BO;進(jìn)而可得$\frac{{S}_{△AOC}}{{S}_{△ABC}}$=$\frac{OM}{BM}$=$\frac{3}{5}$,而又由S△AOB+S△BOC=$\frac{2}{5}$S△ABC,分析可得S△AOB=$\frac{1}{5}$S△ABC,結(jié)合題意計(jì)算可得△AOB和△AOC的面積比,即可得答案.

解答 解:根據(jù)題意,如圖:在△ABC中,M為AC的中點(diǎn),
則$\overrightarrow{OA}$+$\overrightarrow{OC}$=2$\overrightarrow{OM}$,
又由$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,則有2$\overrightarrow{OM}$=-3$\overrightarrow{OB}$,
從而可得B,O,M三點(diǎn)共線,且2OM=3BO;
由2OM=3BO可得,$\frac{{S}_{△AOC}}{{S}_{△ABC}}$=$\frac{OM}{BM}$=$\frac{3}{5}$,
S△AOB+S△BOC=$\frac{2}{5}$S△ABC,
又由S△AOB=S△BOC,則S△AOB=$\frac{1}{5}$S△ABC
則$\frac{{S}_{△AOB}}{{S}_{△AOC}}$=$\frac{1}{3}$;
故選:D.

點(diǎn)評(píng) 本題考查向量的加法運(yùn)算及其幾何意義,向量的共線與點(diǎn)共線的相互轉(zhuǎn)化,解題的關(guān)鍵是要發(fā)現(xiàn)由2OM=3BO.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xoy中圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosα\\ t=3sinα\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$θ=\frac{π}{4}({ρ∈R})$.
(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{y≥x}\end{array}\right.$,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是  (  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.2016年鞍山地區(qū)空氣質(zhì)量的記錄表明,一天的空氣質(zhì)量為優(yōu)良的概率為0.8,連續(xù)兩天為優(yōu)良的概率為0.6,若今天的空氣質(zhì)量為優(yōu)良,則明天空氣質(zhì)量為優(yōu)良的概率是(  )
A.0.48B.0.6C.0.75D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.齊王與田忌賽馬,每人各有三匹馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,共進(jìn)行三場比賽,每次各派一匹馬進(jìn)行比賽,馬不能重復(fù)使用,三場比賽全部比完后勝利場次多者為勝,則田忌獲勝的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知球O外接于正四面體ABCD,小球O'與球O內(nèi)切于點(diǎn)D,與平面ABC相切,球O的表面積為9π,則小球O'的體積為(  )
A.$\frac{4π}{3}$B.C.D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某地十余萬考生的成績中,隨機(jī)地抽取了一批考生的成績,將其分為6組:第一組[40,50),第二組[50,60),…,第六組[90,100],作出頻率分布直方圖,如圖所示
(I)用每組區(qū)間的中點(diǎn)值代表該組的數(shù)據(jù),估算這批考生的平均成績;
(II)現(xiàn)從及格的學(xué)生中,用分層抽樣的方法抽取了70名學(xué)生(其中女生有34名),已知成績“優(yōu)異”(超過90分)的女生有1名,能否有95%的把握認(rèn)為數(shù)學(xué)成績優(yōu)異與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.010.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[-1,m]上隨機(jī)選取一個(gè)數(shù)x,若x≤1的概率為$\frac{2}{5}$,則實(shí)數(shù)m的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{a^x},\;0<x≤1\;\\{log_a}x\;,x>1\end{array}\right.$(a>0且a≠1),若f(3a2)>f(1-2a),則a的取值范圍是( 。
A.$0<a<\frac{1}{2}$B.$\frac{1}{3}<a<\frac{1}{2}$C.$0<a<\frac{1}{3}$D.a>1或$0<a<\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案