12.在區(qū)間[-1,m]上隨機(jī)選取一個(gè)數(shù)x,若x≤1的概率為$\frac{2}{5}$,則實(shí)數(shù)m的值為( 。
A.2B.3C.4D.5

分析 利用幾何概型的公式,利用區(qū)間長度的比值得到關(guān)于m 的等式解之.

解答 解:由題意x≤1的概率為$\frac{2}{5}$,則$\frac{1-(-1)}{m-(-1)}=\frac{2}{5}$,解得m=4;
故選C.

點(diǎn)評(píng) 本題主要考查幾何概型的概率計(jì)算,求出對(duì)應(yīng)的區(qū)間長度是解決本題的關(guān)鍵,比較基礎(chǔ)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=kx+2與函數(shù)$y=\frac{1}{|x|}$的圖象至少有兩個(gè)公共點(diǎn),關(guān)于k不等式(k-2)a-k>0有解,則實(shí)數(shù)a的取值范圍是(  )
A.$-1<a<\frac{1}{3}$B.$a<\frac{1}{3}$C.a<-1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,O為其內(nèi)部一點(diǎn),且滿足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,則△AOB和△AOC的面積比是( 。
A.3:4B.3:2C.1:1D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,矩形ABCD中,AB=2AD=2,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,若M為線段A1C的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,對(duì)于下列說法:
①|(zhì)CA|≥|CA1|
②經(jīng)過點(diǎn)A、E、A1、D的球的體積為2π
③一定存在某個(gè)位置,使DE⊥A1C
④|BM|是定值
其中正確的說法是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,在△ABC中,D為BC的中點(diǎn),BP丄DA,垂足為P,且BP=2,則$\overrightarrow{BC}$•$\overrightarrow{BP}$=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2
(Ⅰ)若橢圓E的長軸長、短軸長、焦距成等差數(shù)列,求橢圓E的離心率;
(Ⅱ)若橢圓E過點(diǎn)A(0,-2),直線AF1,AF2與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B,C,且△ABC的面積為$\frac{50c}{9}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)圓:x2+y2+2y-3=0與y軸交于A(0,y1),B(0,y2)兩點(diǎn),則y1y2 的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案