19.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(I)用定義證明f(x)在(0,1)上是減函數(shù);
(II)判斷函數(shù)的奇偶性,并加以證明.

分析 (1)根據(jù)函數(shù)單調(diào)性的定義進行證明即可.
(2)根據(jù)函數(shù)奇偶性的定義進行證明即可.

解答 解:(1)證明:設(shè)x1,x2∈(0,1)且x1<x2,
則f(x1)-f(x2)=$\frac{1}{{x}_{1}}$+x1-($\frac{1}{{x}_{2}}$+x2)=$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$+(x1-x2)=(x1-x2)•$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$,
∵x1-x2<0,0<x1x2<1,x1x2-1<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
則函數(shù)f(x)在(0,1)上的單調(diào)遞減.
(2)函數(shù)的定義域為{x|x≠0},
則f(-x)=-x-$\frac{1}{x}$=-(x+$\frac{1}{x}$)=-f(x),
則函數(shù)f(x)是奇函數(shù).

點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,利用函數(shù)單調(diào)性和奇偶性的定義是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)f(x)=x2-2x,x∈[t,t+1](t∈R),求函數(shù)f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線x-y+1=0與圓C:x2+y2-4x-2y+m=0交于A,B兩點;
(1)求線段AB的垂直平分線的方程;
(2)若|AB|=2$\sqrt{2}$,求m的值;
(3)在(2)的條件下,求過點P(4,4)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖1,在∠A=45°的平行四邊形ABCD中,DO垂直平分AB,且AB=2,現(xiàn)將△ADO沿DO折起(如圖2),使AC=$\sqrt{6}$.
(Ⅰ)求證:直線AO⊥平面OBCD;
(Ⅱ)求平面AOD與平面ABC所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-x(a>0且a≠1).
(1)若a=$\frac{1}{2}$,求f(x)的單調(diào)遞增區(qū)間;
(2)若a=2,求使f(x)<4成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且asinBcosC+csinBcosA=$\frac{1}{2}$b,則sinB=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an},各項an>0,公比為q.
(1)設(shè)bn=logcan(c>0,c≠1),求證:數(shù)列{bn}是等差數(shù)列,并求出該數(shù)列的首項b1及公差d;
(2)設(shè)(1)中的數(shù)列{bn}單調(diào)遞減,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若復數(shù)z適合|z-i|+|z-1|=$\sqrt{2}$,則|z|的最小值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=($\frac{1}{{{2^x}-1}}$+a)x,a∈R
(1)求函數(shù)的定義域
(2)是否存在實數(shù)a,使得f(x)為偶函數(shù).

查看答案和解析>>

同步練習冊答案