12.已知函數(shù)f(x)的定義域?yàn)閇-2,2],且f(x)在區(qū)間[-2,2]上是增函數(shù),f(1-m)<f(m),求實(shí)數(shù)m的取值范圍.

分析 根據(jù)函數(shù)是增函數(shù),求解不等式即可.

解答 解:∵函數(shù)f(x)的定義域?yàn)閇-2,2],f(x)在區(qū)間[-2,2]上單調(diào)遞增,
∴當(dāng)-2≤x1<x2≤2時(shí),總有f(x1)<f(x2)成立;反之也成立,
即若f(x1)<f(x2),則:-2≤x1<x2≤2.
∵f(1-m)<f(m),
∴$\left\{\begin{array}{l}{-2≤m≤2}\\{-2≤1-m≤2}\\{1-m<m}\end{array}\right.$
解得:$\frac{1}{2}$<m≤2.
所以實(shí)數(shù)m的取值范圍($\frac{1}{2}$,2].

點(diǎn)評(píng) 本題考查了利用函數(shù)的單調(diào)性求解不等式的問題.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k-4,k∈Z},則A,B兩個(gè)集合的關(guān)系:A⊆B(橫線上填入⊆,?或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-(a-2)x-alnx(a∈R).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),證明:對(duì)任意的x>0,f(x)+ex>x2+x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2x2-1
(Ⅰ)用定義證明f(x)是偶函數(shù);
(Ⅱ)用定義證明f(x)在(∞,0]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.補(bǔ)全函數(shù)y=$\left\{\begin{array}{l}{\frac{π}{2}x-5,(x>0)}\\{0,(x=0)}\\{\frac{π}{2}x+3,(x<0)}\end{array}\right.$,的流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)( 。
A.y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$B.y=$\frac{{x}^{2}-1}{x-1}$與y=x+1
C.f(x)=|x|與g(t)=($\sqrt{t}$)2D.y=x與$g(x)=\root{3}{x^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\begin{array}{l}{-\frac{π}{4}$,$\frac{π}{4}}\end{array}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某幾何體的三視圖,俯視圖是邊長(zhǎng)為2的正三角形,則該幾何體的體積是(  )
A.4B.6C.$2\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知tanα=$\frac{1}{7}$,cosβ=$\frac{3}{{\sqrt{10}}}$,且α,β都是銳角,則α+2β=arctan$\frac{13}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案