17.已知tanα=$\frac{1}{7}$,cosβ=$\frac{3}{{\sqrt{10}}}$,且α,β都是銳角,則α+2β=arctan$\frac{13}{16}$.

分析 依題意,可求得tan2β=$\frac{3}{5}$,0<2α<$\frac{π}{4}$;利用兩角和的正切與正切函數(shù)的單調(diào)性即可求得2α+β的值.

解答 解:∵cosβ=$\frac{3}{{\sqrt{10}}}$,可得:tanβ=$\sqrt{\frac{1}{co{s}^{2}β}-1}$=$\frac{1}{3}$,
∴tan2β=$\frac{2tanβ}{1+ta{n}^{2}β}$=$\frac{3}{5}$<1=tan$\frac{π}{4}$,
又β是銳角,y=tanx在(0,$\frac{π}{2}$)上單調(diào)遞增,
∴0<2β<$\frac{π}{4}$;
又∵tanα=$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),
∴tan(α+2β)=$\frac{tanα+tan2β}{1-tanαtan2β}$=$\frac{\frac{1}{7}+\frac{3}{5}}{1-\frac{1}{7}×\frac{3}{5}}$=$\frac{13}{16}$.
∴α+2β∈(0,$\frac{3π}{4}$),
∴2α+β=arctan$\frac{13}{16}$.
故答案為:arctan$\frac{13}{16}$.

點評 本題考查兩角和與差的正切函數(shù),考查正切函數(shù)的單調(diào)性,考查求解運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)的定義域為[-2,2],且f(x)在區(qū)間[-2,2]上是增函數(shù),f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=1+log2x(x≥1)的反函數(shù)f-1(x)=2x-1(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.高三(一)班要安排畢業(yè)晚會的4個音樂節(jié)目,2個舞蹈節(jié)目和1個曲藝節(jié)目的演出順序,要求兩個舞蹈節(jié)目不連排,則不同排法的種數(shù)是( 。
A.1 800B.3 600C.4 320D.5 040

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{{\sqrt{x-3}}}{x-4}$的定義域是[3,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,且在[1,+∞)單調(diào)遞減,f(0)=0,則f(x+1)>0的解集為( 。
A.(1,+∞)B.(-1,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知隨機變量ξ服從正態(tài)分布,且方程x2+2x+ξ=0有實數(shù)解得概率為$\frac{1}{2}$,若P(ξ≤2)=0.75,則P(0≤ξ≤2)=0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若3cos($\frac{π}{2}$-θ)+cos(π+θ)=0,則cos2θ的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=ax2-2x+2,對于滿足1<x<4的一切x值都有f(x)>0,則實數(shù)a的取值范圍為$({\frac{1}{2},+∞})$.

查看答案和解析>>

同步練習(xí)冊答案