【題目】如圖,已知雙曲線的左、右焦點分別為,過右焦點作平行于一條漸近線的直線交雙曲線于點,若的內(nèi)切圓半徑為,則雙曲線的離心率為( )

A.B.C.D.

【答案】C

【解析】

設(shè)雙曲線的左、右焦點分別為,設(shè)雙曲線的一條漸近線方程為,可得直線的方程為,聯(lián)立雙曲線的方程可得的坐標(biāo),設(shè),運用三角形的等積法,以及雙曲線的定義,結(jié)合銳角三角函數(shù)的定義,化簡變形可得,的方程,結(jié)合離心率公式可得所求值.

設(shè)雙曲線的左、右焦點分別為,,

設(shè)雙曲線的一條漸近線方程為

可得直線的方程為,與雙曲線聯(lián)立,

可得,

設(shè),,

由三角形的面積的等積法可得

化簡可得

由雙曲線的定義可得

在三角形,為直線的傾斜角),

,可得,

可得,③

由①②③化簡可得

即為,

可得,則

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人進行乒乓球比賽,兩人打到平,之后的比賽要每球交替發(fā)球權(quán)且要一人凈勝兩球才能取勝,已知甲發(fā)球甲獲勝的概率為,乙發(fā)球甲獲勝的概率為,則下列命題正確的個數(shù)為(

1)若,兩人能在兩球后結(jié)束比賽的概率與有關(guān)

2)若,兩人能在兩球后結(jié)束比賽的概率與有關(guān)

3)第二球分出勝負(fù)的概率與在第二球沒有分出勝負(fù)的情況下進而第四球分出勝負(fù)的概率相同

4)第二球分出勝負(fù)的概率與在第球沒有分出勝負(fù)的情況下進而第球分出勝負(fù)的概率相同

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:的焦點為F,直線y=4y軸的交點為P,與C的交點為Q,且.

(1)求拋物線C的方程;

(2)F的直線lC相交于A,B兩點,若AB的垂直平分線C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課外使用手機的情況,某學(xué)校收集了本校500名學(xué)生201912月課余使用手機的總時間(單位:小時)的情況.從中隨機抽取了50名學(xué)生,將數(shù)據(jù)進行整理,得到如圖所示的頻率分布直方圖.已知這50名學(xué)生中,恰有3名女生課余使用手機的總時間在,現(xiàn)在從課余使用手機總時間在的樣本對應(yīng)的學(xué)生中隨機抽取3名,則至少抽到2名女生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDABCD,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則(

A. S為定值,l不為定值 B. S不為定值,l為定值

C. Sl均為定值 D. Sl均不為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a為常數(shù).

1)討論函數(shù)的單調(diào)性:

2)若函數(shù)有兩個極值點,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】維生素C又叫抗壞血酸,是一種水溶性維生素,是高等靈長類動物與其他少數(shù)生物的必需營養(yǎng)素.維生素C雖不直接構(gòu)成腦組織,也不向腦提供活動能源,但維生素C有多種健腦強身的功效,它是腦功能極為重要的營養(yǎng)物.維生素C的毒性很小,但食用過多仍可產(chǎn)生一些不良反應(yīng).根據(jù)食物中維C的含量可大致分為:含量很豐富:鮮棗、沙棘、獼猴桃、柚子,每100克中的維生素C含量超過100毫克;比較豐富:青椒、桂圓、番茄、草莓、甘藍、黃瓜、柑橘、菜花,每100克中維生素C含量超過50毫克;相對豐富:白菜、油菜、香菜、菠菜、芹菜、莧菜、菜苔、豌豆、豇豆、蘿卜,每100克中維生素C含量超過30~50毫克.現(xiàn)從獼猴桃、柚子兩種食物中測得每100克所含維生素C的量(單位:)得到莖葉圖如圖所示,則下列說法中不正確的是(

A.獼猴桃的平均數(shù)小于柚子的平均數(shù)

B.獼猴桃的方差小于柚子的方差

C.獼猴桃的極差為32

D.柚子的中位數(shù)為121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,已知,,三角形是邊長為2的正三角形,當(dāng)四棱錐的外接球的體積取得最小值時,則以下判斷正確的是(

A.四棱錐的體積取得最小值為,外接球的球心必在四棱錐內(nèi)

B.四棱錐的體積取得最小值為,外接球的球心可在四棱錐內(nèi)或外

C.四棱錐的體積為,外接球的球心必在四棱錐內(nèi)

D.四棱錐的體積為,外接球的球心可在四棱錐內(nèi)或外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線和直線的直角坐標(biāo)方程;

2)若直線軸交點記為,與曲線交于,兩點,求.

查看答案和解析>>

同步練習(xí)冊答案