7.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD都是邊長為1的正三角形,DC=2,E為DC的中點.
(I)求證:PA⊥BD;
(Ⅱ)求直線PE與平面PDB所成角的大小.

分析 (I)連接AE,與BD交于O,連接PO,證明:BD⊥平面PAE,即可證明PA⊥BD;
(Ⅱ)由(I)可知EO⊥平面PDB,則∠EPO為直線PE與平面PDB所成角,即可求直線PE與平面PDB所成角的大小

解答 (I)證明:如圖所示,連接AE,與BD交于O,
連接PO,則
∵四棱錐P-ABCD的底面是直角梯形,AB=AD=1,
∴ABED是正方形,
∴AE⊥BD,BO=OD
∵△PAB和△PAD都是邊長為1的正三角形,
∴PB=PD,
∴PO⊥BD,
∵PO∩AE=O,
∴BD⊥平面PAE,
∵PA?平面PAE,
∴PA⊥BD;
(Ⅱ)解:由(I)可知EO⊥平面PDB,則∠EPO為直線PE與平面PDB所成角.
△PBD中,PB=PD=1,DB=$\sqrt{2}$,∴PB⊥PD,∴PO=$\frac{\sqrt{2}}{2}$,
∵EO=$\frac{\sqrt{2}}{2}$,
∴∠EPO=45°,
∴直線PE與平面PDB所成角為45°.

點評 本題考查的知識點是直線與平面所成的角,直線與平面垂直的判定與性質,熟練掌握線面垂直的判定定理是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=x2+a|x|+2,x∈R在區(qū)間[3,+∞)和[-2,-1]上均為增函數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\frac{11}{3}$,-3]B.[-6,-4]C.[-3,-2$\sqrt{2}}$]D.[-4,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知向量$\overrightarrow m$=(2,-4),$\overrightarrow n$=(a,1)(a∈R)相互垂直,則|${\overrightarrow m$+$\overrightarrow n}$|的值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在四棱錐C-ABEF中,底面ABEF是矩形,F(xiàn)A⊥平面ABC,D是棱AB的中點,點H在棱BE上.且AC=BC=$\sqrt{2}$,AB=2,AF=3.
(1)設BH=λBE,若FH⊥平面DHC,求λ的值:
(2)在(1)的條件下,求當λ>$\frac{1}{2}$時,平面DCF與平面CFH所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=mex-x-1.(其中e為自然對數(shù)的底數(shù))
(1)若曲線y=f(x)過點P(0,1),求曲線y=f(x)在點P(0,1)處的切線方程.
(2)若f(x)>0恒成立,求m的取值范圍.
(3)若f(x)兩個零點為x1,x2且x1<x2,求y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=-x+alnx(a∈R).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)設g(x)=x2-2x+2a,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設A,B是平面α同側的兩點,點O∈α,OA,OB是平面α的斜線,射線OA,OB在α內的射線分別是射線OA′,OB′,若∠A′OB′=$\frac{π}{2}$,則∠AOB是銳角(銳角、直角或鈍角)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直線x-y-3=0被圓$\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù))截得的弦長是( 。
A.3$\sqrt{2}$B.4C.3D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知e是自然對數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3.
(1)求曲線y=F(x)在點(1,F(xiàn)(1))處的切線方程;
(2)當a≤4,x≥1時,求證:F(x)≥f(x).

查看答案和解析>>

同步練習冊答案