【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)的單調性,并給以證明;
(3)求函數(shù)f(x)的值域.

【答案】
(1)解:由題意:函數(shù)f(x)= 是奇函數(shù).

∴f(﹣x)+f(x)=0.

即: =0

化簡整理得: =0

可得:a2x+2=a+22x

解得:a=2.

所以實數(shù)a的值為2


(2)解:由(1)得f(x)= ,其定義域為R.

函數(shù)f(x)在定義域R上單調減函數(shù).證明如下:

設x1<x2,那么:f(x1)﹣f(x2)= = ,

∵x1<x2

,

故得f(x1)﹣f(x2)>0.

所以函數(shù)f(x)在定義域R上單調減函數(shù)


(3)解:由(1)可得f(x)= = =

∴f(x) ,

所以函數(shù)f(x)的值域為(﹣∞, )∪( ,+∞)


【解析】(1)利用奇函數(shù)的定義求解即可:即f(﹣x)+f(x)=0.(2)求函數(shù)的定義域,利用定法證明其單調性.(3)對函數(shù)進行化簡,分離常數(shù)法,即可得到值域.
【考點精析】解答此題的關鍵在于理解函數(shù)奇偶性的性質的相關知識,掌握在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個根為1.
(1)求函數(shù)f(x)的解析式;
(2)對任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ +x在區(qū)間[m,n]上的最小值是2m,最大值是2n,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四種說法:

①命題“”為假,則至少一個為假;

②命題“一次函數(shù)都是單調函數(shù)”的否定是“一次函數(shù)都不是單調函數(shù)”;

③動點到點 與到點的距離之和為2,則點的軌跡是焦點在軸上的橢圓;

④命題“若直線與雙曲線相切,則該直線與雙曲線只有一個公共點”的逆命題是真命題.

其中正確的有__________.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結論即可);

(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):

時間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點圖如圖:

由圖可以看出,金牌數(shù)之和與時間之間存在線性相關關系,請求出關于的線性回歸方程,并預測到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?

附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面內動點P(x,y)與兩定點A(-2, 0), B(2,0)連線的斜率之積等于,若點P的軌跡為曲線E,過點Q作斜率不為零的直線交曲線E于點

(I)求曲線E的方程;

(II)求證:

(III)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調區(qū)間;

(2)設當時, ,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結果如下圖:

(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計值;

(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;

(3)為適應市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(

按分層抽樣抽取10只,再隨機抽取3只品嘗,記為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是

查看答案和解析>>

同步練習冊答案