9.已知向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,λ)$,且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則實數(shù)λ的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.(-∞,-4)∪(-4,1]D.(-∞,-4)∪(-4,1)

分析 向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,λ)$,且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則$\overrightarrow{a}•\overrightarrow$>0,且排除同向的情況.

解答 解:∵向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,λ)$,且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,
∴$\overrightarrow{a}•\overrightarrow$>0,
∴2-2λ>0
解得λ<1
當(dāng)λ=-4時,$\overrightarrow{a}$與$\overrightarrow$同向
∴實數(shù)λ的取值范圍是(-∞,-4)∪(-4,1)
故選:D

點評 本題考查的知識點是向量數(shù)量積的性質(zhì)及運算律,由兩個向量夾角為銳角,兩個向量數(shù)量積大于0,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y-2≤0}\end{array}\right.$,設(shè)z=2x+y,則z的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+2ax+alnx,a≤0.
(1)若當(dāng)a=-2時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)>$\frac{1}{2}$(2e+1)a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知對于任意實數(shù)x,二次函數(shù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負的.
(1)求a的取值范圍;
(2)求函數(shù)g(a)=(a+1)(|a-1|+2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)為偶函數(shù)的是( 。
A.y=x-1B.y=$\sqrt{x}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,∠A1AC=60°,M,N分別是線段AA1,BC上的點,且NC=NB,AA1⊥平面BCM.
(1)求證:AN∥平面BC1M;
(2)求二面角M-BC1-B1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示的散點圖,現(xiàn)選用兩種回歸模型,模型A:使用線性回歸,計算相關(guān)指數(shù)$R_1^2$;模型B:用指數(shù)回歸,計算出相關(guān)指數(shù)$R_2^2$,則一定有( 。
A.$R_1^2>R_2^2$B.$R_1^2<R_2^2$C.$R_1^2=R_2^2$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的三邊分別是a,b,c,已知$A={30°},c=2\sqrt{3},b=2$,則△ABC的面積為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-x2+x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,求f(x)在區(qū)間(0,a]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案