精英家教網 > 高中數學 > 題目詳情
19.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為2的正方形,正視圖和側視圖中的兩條虛線都互相垂直且相等,則該幾何體的體積是( 。
A.$8-\frac{π}{3}$B.$8-\frac{π}{6}$C.$\frac{20}{3}$D.$\frac{16}{3}$

分析 根據幾何體的三視圖得出該幾何體是邊長為2的正方體中,去掉一個高為1的正四棱錐,求出它的體積即可.

解答 解:根據幾何體的三視圖得,
該幾何體是邊長為2的正方體中,去掉一個高為1的正四棱錐,
該幾何體的體積是
V組合體=V正方體-V四棱錐=23-$\frac{1}{3}$×22×1=$\frac{20}{3}$.
故選:C.

點評 本題考查了空間幾何體的三視圖的應用問題,解題時應根據三視圖得出該幾何體是什么圖形,從而解得問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.(文科)如圖,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB⊥BC,D為AC的中點,AA1=AB=2.
(Ⅰ)求證:AB1∥平面BC1D;
(Ⅱ)設BC=3,求四棱錐B-DAA1C1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知等比數列{an}的前n項和為Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比數列,求m值;      
(2)求a1的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知f(x)是定義在R上周期為2的奇函數,當x∈(0,1)時,f(x)=4x-1,則f(log4$\frac{1}{32}$)( 。
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.設二次函數f(x)=x2+ax+b(a、b∈R).
(1)當b=1時,求函數f(x)在[-1,1]上的值域;
(2)若方程f(x)=0有兩個非整數實根,且這兩實數根在相鄰兩整數之間,試證明存在整數k,使得$|{f(k)}|≤\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.方程(a-1)x2+(2-a)y2=(a-1)(2-a)中,當1<a<2時,它表示( 。
A.橢圓或圓B.雙曲線C.橢圓D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.過(2,2)點與雙曲線x2$-\frac{y^2}{4}=1$有共同漸近線的雙曲線方程為(  )
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.若3a=5b=A(ab≠0),且$\frac{1}{a}$+$\frac{1}$=2,則A=$\sqrt{15}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,∠BCD=60°,PD⊥平面ABCD,PD=AD=CD=1,點E、F分別為AB和PD的中點.
(1)求證:直線AF∥平面PEC;
(2)求PC與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習冊答案