【題目】的三邊長滿足,則的取值范圍為______

【答案】

【解析】

設(shè)出x=,y=,根據(jù)b+2c≤3a,c+2a≤3b變形得到兩個(gè)不等式,分別記作①和②,然后根據(jù)三角形的兩邊之和大于第三邊,兩邊之差小于第三邊分別列出不等式,變形得到三個(gè)不等式,分別記作③④⑤,畫出圖形,如圖所示,得到由四點(diǎn)組成的四邊形區(qū)域,根據(jù)簡單的線性規(guī)劃,得到x的范圍,即得到的取值范圍.

x=,y=,由b+2c≤3a,c+2a≤3b得:

x+2y≤3①,3x﹣y≥2②,

又﹣c<a﹣b<ca+b>c得:

x﹣y<1③,x﹣y>﹣1④,x+y>1⑤,

由①②③④⑤可作出圖形,

得到以點(diǎn)D(),C(1,0),B(,),A(1,1)為頂點(diǎn)的四邊形區(qū)域,

由線性規(guī)劃可得:<x<,0<y<1,

=x的取值范圍為(,).

= ==-1+=-1+ 在()上遞減.

x= 時(shí),原式= ,x=時(shí),原式=

原式

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式:(a+1)x2-(2a+3)x+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 ,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=
(1)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程.
(2)若點(diǎn)P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.

(1)求證:C、D、G、E四點(diǎn)共圓.
(2)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市8所中學(xué)生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個(gè)位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是(

A.91 5.5
B.91 5
C.92 5.5
D.92 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)平面直角坐標(biāo)系xoy中,直線截以原點(diǎn)O為圓心的圓所得的弦長為

1)求圓O的方程;

2)若直線與圓O切于第一象限,且與坐標(biāo)軸交于D,E,當(dāng)DE長最小時(shí),求直線的方程;

3)設(shè)M,P是圓O上任意兩點(diǎn),點(diǎn)M關(guān)于x軸的對稱點(diǎn)為N,若直線MPNP分別交于x軸于點(diǎn)(m,0)和(n,0),問mn是否為定值?若是,請求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點(diǎn)E,AB=2AC,

(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時(shí),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體ABC﹣A1B1C1中,底面△ABC為等邊三角形,邊長為2,AA1⊥平面ABC,四邊形A1ACC1為直角梯形,CC1與平面ABC所成的角為 ,AA1=1

(1)若P為AB的中點(diǎn),求證:A1P∥平面BC1C;
(2)求二面角A1﹣BC1﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中

Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

Ⅱ)若對任意的,為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案