【題目】給出下列四個(gè)命題:
①由樣本數(shù)據(jù)得到的回歸方程 必過樣本點(diǎn)的中心( , );
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為 =3﹣2.5x,則變量x每增加1個(gè)單位時(shí),y平均減少2.5個(gè)單位;
④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,殘差平方和越。
上述四個(gè)命題中,正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:對(duì)于①,由樣本數(shù)據(jù)得到的回歸方程 必過樣本點(diǎn)的中心( , ),命題正確;
對(duì)于②,用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越好,原命題錯(cuò)誤;
對(duì)于③,在線性回歸方程 =3﹣2.5x中,變量x每增加1個(gè)單位時(shí),y平均減少2.5個(gè)單位,命題正確;
對(duì)于④,在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高,殘差平方和也越小,命題正確.
上述四個(gè)命題中,正確命題的個(gè)數(shù)為3.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生完成數(shù)學(xué)作業(yè)所需時(shí)間,某學(xué)校統(tǒng)計(jì)了高三年級(jí)學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間介于30分鐘到90分鐘之間,圖5是統(tǒng)計(jì)結(jié)果的頻率分布直方圖.
(1)數(shù)學(xué)教研組計(jì)劃對(duì)作業(yè)完成較慢的20%的學(xué)生進(jìn)行集中輔導(dǎo),試求每天完成數(shù)學(xué)作業(yè)的平均時(shí)間為多少分鐘以上的學(xué)生需要參加輔導(dǎo)?
(2)現(xiàn)從高三年級(jí)學(xué)生中任選4人,記4人中每天完成數(shù)學(xué)作業(yè)的平均時(shí)間不超過50分鐘的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+ax2﹣4在x=2處取得極值,若m,n∈[0,1],則f'(n)+f(m)的最大值是( )
A.﹣9
B.﹣1
C.1
D.﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)函數(shù),若使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)60噸廚余垃圾,假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分別為x,y,z,其中x>0,x+y+z=60,則數(shù)據(jù)x,y,z的標(biāo)準(zhǔn)差的最大值為 . (注:方差 ,其中 為x1 , x2 , …,xn的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知四棱柱的底面是邊長為的菱形,且, 平面, ,設(shè)為的中點(diǎn)。
(Ⅰ)求證: 平面
(Ⅱ)點(diǎn)在線段上,且平面,
求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若, ,且, , ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x2﹣3x﹣18≤0},N={x|1﹣a≤x≤2a+1}.
(1)若a=3,求M∩N和RN;
(2)若MN,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com