【題目】(本小題滿分12分)
已知四棱柱的底面是邊長(zhǎng)為的菱形,且, 平面, ,設(shè)為的中點(diǎn)。
(Ⅰ)求證: 平面
(Ⅱ)點(diǎn)在線段上,且平面,
求平面和平面所成銳二面角的余弦值.
【答案】(1)略 (2)
【解析】試題分析:證明線面垂直只需證明直線與平面內(nèi)的兩條相交直線垂直;求二面角有兩種方法:一是先做再證,最后求出,是一種傳統(tǒng)方法,另一種是建立空間直角坐標(biāo)系,利用法向量求二面角,本題采用第二種方法.
試題解析:
(Ⅰ)證明:因?yàn)橐阎撍睦庵鶠橹彼睦庵,?/span>為等邊三角形, ,所以平面,而平面,故,又因?yàn)?/span>的三邊長(zhǎng)分別為,所以為等腰直角三角形
所以,結(jié)合, ,所以 平面
(Ⅱ)解:取中點(diǎn),則由為等邊三角形知,從而
以D為原點(diǎn),以為坐標(biāo)軸,建立如圖所示的坐標(biāo)系,
此時(shí),,設(shè)
由上面的討論知平面的法向量為
由于平面,故平面
故,故
設(shè)平面的法向量為,
由知,取,故
設(shè)平面和平面所成銳角為,則
即平面和平面所成銳角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),.
(1)令,求的單調(diào)區(qū)間;
(2)已知在處取得極大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知g(x)=sin2x,將g(x)的圖象向左平移 個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,得到函數(shù)f(x)的圖象,則( )
A.
B. ??
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①由樣本數(shù)據(jù)得到的回歸方程 必過(guò)樣本點(diǎn)的中心( , );
②用相關(guān)指數(shù)R2來(lái)刻畫回歸效果,R2的值越小,說(shuō)明模型的擬合效果越好;
③若線性回歸方程為 =3﹣2.5x,則變量x每增加1個(gè)單位時(shí),y平均減少2.5個(gè)單位;
④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,殘差平方和越。
上述四個(gè)命題中,正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式在上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,求證:不等式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)每天以每件100元的價(jià)格購(gòu)入A商品若干件,并以每件200元的價(jià)格出售,若所購(gòu)進(jìn)的A商品前8小時(shí)沒(méi)有售完,則商場(chǎng)對(duì)沒(méi)賣出的A商品以每件60元的低價(jià)當(dāng)天處理完畢(假定A商品當(dāng)天能夠處理完).該商場(chǎng)統(tǒng)計(jì)了100天A商品在每天的前8小時(shí)的銷售量,制成如表格.
前8小時(shí)的銷售量t(單位:件) | 5 | 6 | 7 |
頻 數(shù) | 40 | 35 | 25 |
(1)若某天該商場(chǎng)共購(gòu)入7件A商品,在前8個(gè)小時(shí)售出5件. 若這些產(chǎn)品被7名不同的顧客購(gòu)買,現(xiàn)從這7名顧客中隨機(jī)選3人進(jìn)行回訪,記X表示這3人中以每件200元的價(jià)格購(gòu)買的人數(shù),求X的分布列;
(2)將頻率視為概率,要使商場(chǎng)每天購(gòu)進(jìn)A商品時(shí)所獲得的平均利潤(rùn)最大,則每天應(yīng)購(gòu)進(jìn)幾件A商品,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】抽樣調(diào)查某大型機(jī)器設(shè)備使用年限x和該年支出維修費(fèi)用y(萬(wàn)元),得到數(shù)據(jù)如表
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
部分?jǐn)?shù)據(jù)分析如下 =25, yi=112.3, =90
參考公式:線性回歸直線方程為 ,
(1)求線性回歸方程;
(2)由(1)中結(jié)論預(yù)測(cè)第10年所支出的維修費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+m21﹣x .
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)的圖象關(guān)于點(diǎn)A(a,0)對(duì)稱,若存在,求實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.
注:點(diǎn)M(x1 , y1),N(x2 , y2)的中點(diǎn)坐標(biāo)為( , ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com