分析 (1)通過對數(shù)的基本運算,推出三角形的角的關(guān)系,利用兩角和的正切以及三角形的內(nèi)角和,求出tanB的范圍,即可得到B的范圍.
(2)利用正弦函數(shù)的二倍角公式將f(x)=7-4sinxcosx+4cos2x-4cos4x化為:f(x)═(sin2x-1)2+6,即可得到答案
解答 解:(1)由題意,得tan2B=tanAtanC,
∵tanB=-tan(A+C)=$\frac{tanA+tanC}{tanA•tanC-1}$,
∴tanB=$\frac{tanA+tanC}{ta{n}^{2}B-1}$,
∴tan3B-tanB=tanA+tanC≥2$\sqrt{tanA•tanC}$=2tanB,
∴tan3B≥3tanB,tanB>0
∴tanB≥$\sqrt{3}$,
∴B∈[$\frac{π}{3}$,$\frac{π}{2}$),
(2)∵f(x)=7-4sinxcosx+4cos2x-4cos4x
=7-2sin2x+4cos2x•sin2x
=7-2sin2x+sin22x
=(sin2x-1)2+6.
當(dāng)sin2x=-1時,即2x=2kπ-$\frac{π}{2}$時,即x=kπ-$\frac{π}{4}$時,k∈Z時,f(x)有最大值.
∴f(x)max=10,
故答案為:(1)[$\frac{π}{3}$,$\frac{π}{2}$),(2)10
點評 本題考查三角函數(shù)中的恒等變換的應(yīng)用,三角函數(shù)的化簡求值,著重考察正弦函數(shù)的二倍角公式及正弦函數(shù)的性質(zhì),突出二次函數(shù)的配方法的考察,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{1}{4},1)$ | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | (-∞,0]∪[2,+∞) | C. | [2,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | π+1 | D. | 1-cos1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1≤ω≤$\frac{3}{2}$ | B. | $\frac{3}{2}$<ω≤3 | C. | 3≤ω<4 | D. | $\frac{3}{2}$≤ω<$\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com