(1)已知tanx=2,計算cos2x+cosxsinx-sin2x的值;
(2)化簡:
(1+sinθ+cosθ)(sin
θ
2
-cos
θ
2
)
2+2cosθ
(0<θ<π).
考點:同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:計算題,三角函數(shù)的求值
分析:(1)tanx=2,將已知cos2x+cosxsinx-sin2x轉(zhuǎn)化為
cos2x+cosxsinx-sin2x
sin2x+cos2x
,再弦化切即可;
(2)利用二倍角的正弦與余弦公式化簡整理即可.
解答: 解:(1)∵tanx=2,
∴cos2x+cosxsinx-sin2x
=
cos2x+cosxsinx-sin2x
sin2x+cos2x

=
1+tanx-tan2x
tan2x+1

=
1+2-4
4+1
=-
1
5
;
(2)原式=
(2cos2
θ
2
+2sin
θ
2
cos
θ
2
)(sin
θ
2
-cos
θ
2
)
2cos2
θ
2

=
2cos
θ
2
(sin
θ
2
+cos
θ
2
)(sin
θ
2
-cos
θ
2
)
2cos
θ
2

=sin2
θ
2
-cos2
θ
2

=-cosθ.
點評:本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查二倍角的正弦與余弦公式,“弦”化“切”是關(guān)鍵,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={0,2,a},B={0,a2},若A∩B={0,a},則a的值為( 。
A、0B、1C、±1D、0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,前n項的和為Sn,對任意的n≥2(n∈N*),3Sn-4,an,2-
3
2
Sn-1
總成等差數(shù)列.
(1)求a2,a3,a4的值并猜想數(shù)列{an}的通項公式an
(2)證明:
n
i=1
|ai|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=x4+2x
(2)y=xcosx-(lnx)sinx            
(3)y=
2lnx+1
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二理科開設(shè)語文、數(shù)學(xué)、外語、物理、化學(xué)、生物和體育七門課程,根據(jù)下列條件,課表分別有多少種不同排法?
(1)某天開設(shè)七門不同課程,其中體育課不排在第一、七節(jié).
(2)某天開設(shè)四門不同課程,其中體育課不排在第一、四節(jié).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,斜率為1的直線l與橢圓C交于不同兩點M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線過點F(1,0),求線段MN的長;
(Ⅲ)若直線l過點(m,0),且以MN為直徑的圓恰過原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心為坐標(biāo)原點,焦點在x軸上,長半軸長與短半軸長之和為1+
5
,離心率為
2
5
5
.   
(Ⅰ)求橢圓的方程;
(Ⅱ)若C(l,0),過B(-1,0)作直線l交橢圓于M,N兩點,且
CM
CN
=2,求△MNC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=5sin(5x+
π
6
)-1

(1)寫出函數(shù)的振幅、周期、初相;
(2)求函數(shù)的最大值和最小值并寫出當(dāng)函數(shù)取得最大值和最小值時x的相應(yīng)取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直二面角α-AB-β中,S∈平面α,C∈平面β,∠ACB=90°,SA⊥AB,AD⊥SC于D,
(1)求證:AD⊥平面SBC,
(2)若SA=1,SB=
5
,直線SC與平面β所成角為30°,求直線SC與平面α所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案